use bitcoin::blockdata::block::BlockHeader; use bitcoin::blockdata::transaction::{TxIn,TxOut,SigHashType,Transaction}; use bitcoin::blockdata::script::Script; use bitcoin::network::serialize; use bitcoin::util::hash::Sha256dHash; use bitcoin::util::bip143; use crypto::digest::Digest; use secp256k1::{Secp256k1,Message,Signature}; use secp256k1::key::{SecretKey,PublicKey}; use ln::msgs::HandleError; use ln::chan_utils; use ln::chan_utils::HTLCOutputInCommitment; use chain::chaininterface::{ChainListener, ChainWatchInterface, BroadcasterInterface}; use chain::transaction::OutPoint; use util::sha2::Sha256; use util::byte_utils; use std::collections::HashMap; use std::sync::{Arc,Mutex}; use std::{hash,cmp}; pub enum ChannelMonitorUpdateErr { /// Used to indicate a temporary failure (eg connection to a watchtower failed, but is expected /// to succeed at some point in the future). /// Such a failure will "freeze" a channel, preventing us from revoking old states or /// submitting new commitment transactions to the remote party. /// ChannelManager::test_restore_channel_monitor can be used to retry the update(s) and restore /// the channel to an operational state. TemporaryFailure, /// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a /// different watchtower and cannot update with all watchtowers that were previously informed /// of this channel). This will force-close the channel in question. PermanentFailure, } /// Simple trait indicating ability to track a set of ChannelMonitors and multiplex events between /// them. Generally should be implemented by keeping a local SimpleManyChannelMonitor and passing /// events to it, while also taking any add_update_monitor events and passing them to some remote /// server(s). /// Note that any updates to a channel's monitor *must* be applied to each instance of the /// channel's monitor everywhere (including remote watchtowers) *before* this function returns. If /// an update occurs and a remote watchtower is left with old state, it may broadcast transactions /// which we have revoked, allowing our counterparty to claim all funds in the channel! pub trait ManyChannelMonitor: Send + Sync { /// Adds or updates a monitor for the given `funding_txo`. fn add_update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr>; } /// A simple implementation of a ManyChannelMonitor and ChainListener. Can be used to create a /// watchtower or watch our own channels. /// Note that you must provide your own key by which to refer to channels. /// If you're accepting remote monitors (ie are implementing a watchtower), you must verify that /// users cannot overwrite a given channel by providing a duplicate key. ie you should probably /// index by a PublicKey which is required to sign any updates. /// If you're using this for local monitoring of your own channels, you probably want to use /// `OutPoint` as the key, which will give you a ManyChannelMonitor implementation. pub struct SimpleManyChannelMonitor { monitors: Mutex>, chain_monitor: Arc, broadcaster: Arc } impl ChainListener for SimpleManyChannelMonitor { fn block_connected(&self, _header: &BlockHeader, height: u32, txn_matched: &[&Transaction], _indexes_of_txn_matched: &[u32]) { let monitors = self.monitors.lock().unwrap(); for monitor in monitors.values() { monitor.block_connected(txn_matched, height, &*self.broadcaster); } } fn block_disconnected(&self, _: &BlockHeader) { } } impl SimpleManyChannelMonitor { pub fn new(chain_monitor: Arc, broadcaster: Arc) -> Arc> { let res = Arc::new(SimpleManyChannelMonitor { monitors: Mutex::new(HashMap::new()), chain_monitor, broadcaster }); let weak_res = Arc::downgrade(&res); res.chain_monitor.register_listener(weak_res); res } pub fn add_update_monitor_by_key(&self, key: Key, monitor: ChannelMonitor) -> Result<(), HandleError> { let mut monitors = self.monitors.lock().unwrap(); match monitors.get_mut(&key) { Some(orig_monitor) => return orig_monitor.insert_combine(monitor), None => {} }; match monitor.funding_txo { None => self.chain_monitor.watch_all_txn(), Some(outpoint) => self.chain_monitor.install_watch_outpoint((outpoint.txid, outpoint.index as u32)), } monitors.insert(key, monitor); Ok(()) } } impl ManyChannelMonitor for SimpleManyChannelMonitor { fn add_update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr> { match self.add_update_monitor_by_key(funding_txo, monitor) { Ok(_) => Ok(()), Err(_) => Err(ChannelMonitorUpdateErr::PermanentFailure), } } } /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction, /// instead claiming it in its own individual transaction. const CLTV_SHARED_CLAIM_BUFFER: u32 = 12; /// If an HTLC expires within this many blocks, force-close the channel to broadcast the /// HTLC-Success transaction. const CLTV_CLAIM_BUFFER: u32 = 6; #[derive(Clone)] enum KeyStorage { PrivMode { revocation_base_key: SecretKey, htlc_base_key: SecretKey, }, SigsMode { revocation_base_key: PublicKey, htlc_base_key: PublicKey, sigs: HashMap, } } #[derive(Clone)] struct LocalSignedTx { /// txid of the transaction in tx, just used to make comparison faster txid: Sha256dHash, tx: Transaction, revocation_key: PublicKey, a_htlc_key: PublicKey, b_htlc_key: PublicKey, delayed_payment_key: PublicKey, feerate_per_kw: u64, htlc_outputs: Vec<(HTLCOutputInCommitment, Signature, Signature)>, } const SERIALIZATION_VERSION: u8 = 1; const MIN_SERIALIZATION_VERSION: u8 = 1; pub struct ChannelMonitor { funding_txo: Option, commitment_transaction_number_obscure_factor: u64, key_storage: KeyStorage, delayed_payment_base_key: PublicKey, their_htlc_base_key: Option, // first is the idx of the first of the two revocation points their_cur_revocation_points: Option<(u64, PublicKey, Option)>, our_to_self_delay: u16, their_to_self_delay: Option, old_secrets: [([u8; 32], u64); 49], remote_claimable_outpoints: HashMap>, /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain. /// Nor can we figure out their commitment numbers without the commitment transaction they are /// spending. Thus, in order to claim them via revocation key, we track all the remote /// commitment transactions which we find on-chain, mapping them to the commitment number which /// can be used to derive the revocation key and claim the transactions. remote_commitment_txn_on_chain: Mutex>, /// Cache used to make pruning of payment_preimages faster. /// Maps payment_hash values to commitment numbers for remote transactions for non-revoked /// remote transactions (ie should remain pretty small). /// Serialized to disk but should generally not be sent to Watchtowers. remote_hash_commitment_number: HashMap<[u8; 32], u64>, // We store two local commitment transactions to avoid any race conditions where we may update // some monitors (potentially on watchtowers) but then fail to update others, resulting in the // various monitors for one channel being out of sync, and us broadcasting a local // transaction for which we have deleted claim information on some watchtowers. prev_local_signed_commitment_tx: Option, current_local_signed_commitment_tx: Option, payment_preimages: HashMap<[u8; 32], [u8; 32]>, destination_script: Script, secp_ctx: Secp256k1, //TODO: dedup this a bit... } impl Clone for ChannelMonitor { fn clone(&self) -> Self { ChannelMonitor { funding_txo: self.funding_txo.clone(), commitment_transaction_number_obscure_factor: self.commitment_transaction_number_obscure_factor.clone(), key_storage: self.key_storage.clone(), delayed_payment_base_key: self.delayed_payment_base_key.clone(), their_htlc_base_key: self.their_htlc_base_key.clone(), their_cur_revocation_points: self.their_cur_revocation_points.clone(), our_to_self_delay: self.our_to_self_delay, their_to_self_delay: self.their_to_self_delay, old_secrets: self.old_secrets.clone(), remote_claimable_outpoints: self.remote_claimable_outpoints.clone(), remote_commitment_txn_on_chain: Mutex::new((*self.remote_commitment_txn_on_chain.lock().unwrap()).clone()), remote_hash_commitment_number: self.remote_hash_commitment_number.clone(), prev_local_signed_commitment_tx: self.prev_local_signed_commitment_tx.clone(), current_local_signed_commitment_tx: self.current_local_signed_commitment_tx.clone(), payment_preimages: self.payment_preimages.clone(), destination_script: self.destination_script.clone(), secp_ctx: self.secp_ctx.clone(), } } } impl ChannelMonitor { pub fn new(revocation_base_key: &SecretKey, delayed_payment_base_key: &PublicKey, htlc_base_key: &SecretKey, our_to_self_delay: u16, destination_script: Script) -> ChannelMonitor { ChannelMonitor { funding_txo: None, commitment_transaction_number_obscure_factor: 0, key_storage: KeyStorage::PrivMode { revocation_base_key: revocation_base_key.clone(), htlc_base_key: htlc_base_key.clone(), }, delayed_payment_base_key: delayed_payment_base_key.clone(), their_htlc_base_key: None, their_cur_revocation_points: None, our_to_self_delay: our_to_self_delay, their_to_self_delay: None, old_secrets: [([0; 32], 1 << 48); 49], remote_claimable_outpoints: HashMap::new(), remote_commitment_txn_on_chain: Mutex::new(HashMap::new()), remote_hash_commitment_number: HashMap::new(), prev_local_signed_commitment_tx: None, current_local_signed_commitment_tx: None, payment_preimages: HashMap::new(), destination_script: destination_script, secp_ctx: Secp256k1::new(), } } #[inline] fn place_secret(idx: u64) -> u8 { for i in 0..48 { if idx & (1 << i) == (1 << i) { return i } } 48 } #[inline] fn derive_secret(secret: [u8; 32], bits: u8, idx: u64) -> [u8; 32] { let mut res: [u8; 32] = secret; for i in 0..bits { let bitpos = bits - 1 - i; if idx & (1 << bitpos) == (1 << bitpos) { res[(bitpos / 8) as usize] ^= 1 << (bitpos & 7); let mut sha = Sha256::new(); sha.input(&res); sha.result(&mut res); } } res } /// Inserts a revocation secret into this channel monitor. Also optionally tracks the next /// revocation point which may be required to claim HTLC outputs which we know the preimage of /// in case the remote end force-closes using their latest state. Prunes old preimages if neither /// needed by local commitment transactions HTCLs nor by remote ones. Unless we haven't already seen remote /// commitment transaction's secret, they are de facto pruned (we can use revocation key). pub(super) fn provide_secret(&mut self, idx: u64, secret: [u8; 32], their_next_revocation_point: Option<(u64, PublicKey)>) -> Result<(), HandleError> { let pos = ChannelMonitor::place_secret(idx); for i in 0..pos { let (old_secret, old_idx) = self.old_secrets[i as usize]; if ChannelMonitor::derive_secret(secret, pos, old_idx) != old_secret { return Err(HandleError{err: "Previous secret did not match new one", msg: None}) } } self.old_secrets[pos as usize] = (secret, idx); if let Some(new_revocation_point) = their_next_revocation_point { match self.their_cur_revocation_points { Some(old_points) => { if old_points.0 == new_revocation_point.0 + 1 { self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(new_revocation_point.1))); } else if old_points.0 == new_revocation_point.0 + 2 { if let Some(old_second_point) = old_points.2 { self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(new_revocation_point.1))); } else { self.their_cur_revocation_points = Some((new_revocation_point.0, new_revocation_point.1, None)); } } else { self.their_cur_revocation_points = Some((new_revocation_point.0, new_revocation_point.1, None)); } }, None => { self.their_cur_revocation_points = Some((new_revocation_point.0, new_revocation_point.1, None)); } } } if !self.payment_preimages.is_empty() { let local_signed_commitment_tx = self.current_local_signed_commitment_tx.as_ref().expect("Channel needs at least an initial commitment tx !"); let prev_local_signed_commitment_tx = self.prev_local_signed_commitment_tx.as_ref(); let min_idx = self.get_min_seen_secret(); let remote_hash_commitment_number = &mut self.remote_hash_commitment_number; self.payment_preimages.retain(|&k, _| { for &(ref htlc, _, _) in &local_signed_commitment_tx.htlc_outputs { if k == htlc.payment_hash { return true } } if let Some(prev_local_commitment_tx) = prev_local_signed_commitment_tx { for &(ref htlc, _, _) in prev_local_commitment_tx.htlc_outputs.iter() { if k == htlc.payment_hash { return true } } } let contains = if let Some(cn) = remote_hash_commitment_number.get(&k) { if *cn < min_idx { return true } true } else { false }; if contains { remote_hash_commitment_number.remove(&k); } false }); } Ok(()) } /// Informs this monitor of the latest remote (ie non-broadcastable) commitment transaction. /// The monitor watches for it to be broadcasted and then uses the HTLC information (and /// possibly future revocation/preimage information) to claim outputs where possible. /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers. pub(super) fn provide_latest_remote_commitment_tx_info(&mut self, unsigned_commitment_tx: &Transaction, htlc_outputs: Vec, commitment_number: u64) { // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction // so that a remote monitor doesn't learn anything unless there is a malicious close. // (only maybe, sadly we cant do the same for local info, as we need to be aware of // timeouts) for htlc in &htlc_outputs { self.remote_hash_commitment_number.insert(htlc.payment_hash, commitment_number); } self.remote_claimable_outpoints.insert(unsigned_commitment_tx.txid(), htlc_outputs); } /// Informs this monitor of the latest local (ie broadcastable) commitment transaction. The /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it /// is important that any clones of this channel monitor (including remote clones) by kept /// up-to-date as our local commitment transaction is updated. /// Panics if set_their_to_self_delay has never been called. pub(super) fn provide_latest_local_commitment_tx_info(&mut self, signed_commitment_tx: Transaction, local_keys: chan_utils::TxCreationKeys, feerate_per_kw: u64, htlc_outputs: Vec<(HTLCOutputInCommitment, Signature, Signature)>) { assert!(self.their_to_self_delay.is_some()); self.prev_local_signed_commitment_tx = self.current_local_signed_commitment_tx.take(); self.current_local_signed_commitment_tx = Some(LocalSignedTx { txid: signed_commitment_tx.txid(), tx: signed_commitment_tx, revocation_key: local_keys.revocation_key, a_htlc_key: local_keys.a_htlc_key, b_htlc_key: local_keys.b_htlc_key, delayed_payment_key: local_keys.a_delayed_payment_key, feerate_per_kw, htlc_outputs, }); } /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all /// commitment_tx_infos which contain the payment hash have been revoked. pub(super) fn provide_payment_preimage(&mut self, payment_hash: &[u8; 32], payment_preimage: &[u8; 32]) { self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone()); } pub fn insert_combine(&mut self, mut other: ChannelMonitor) -> Result<(), HandleError> { match self.funding_txo { Some(txo) => if other.funding_txo.is_some() && other.funding_txo.unwrap() != txo { return Err(HandleError{err: "Funding transaction outputs are not identical!", msg: None}); }, None => if other.funding_txo.is_some() { self.funding_txo = other.funding_txo; } } let other_min_secret = other.get_min_seen_secret(); let our_min_secret = self.get_min_seen_secret(); if our_min_secret > other_min_secret { self.provide_secret(other_min_secret, other.get_secret(other_min_secret).unwrap(), None)?; } if our_min_secret >= other_min_secret { self.their_cur_revocation_points = other.their_cur_revocation_points; for (txid, htlcs) in other.remote_claimable_outpoints.drain() { self.remote_claimable_outpoints.insert(txid, htlcs); } if let Some(local_tx) = other.prev_local_signed_commitment_tx { self.prev_local_signed_commitment_tx = Some(local_tx); } if let Some(local_tx) = other.current_local_signed_commitment_tx { self.current_local_signed_commitment_tx = Some(local_tx); } self.payment_preimages = other.payment_preimages; } Ok(()) } /// Panics if commitment_transaction_number_obscure_factor doesn't fit in 48 bits pub(super) fn set_commitment_obscure_factor(&mut self, commitment_transaction_number_obscure_factor: u64) { assert!(commitment_transaction_number_obscure_factor < (1 << 48)); self.commitment_transaction_number_obscure_factor = commitment_transaction_number_obscure_factor; } /// Allows this monitor to scan only for transactions which are applicable. Note that this is /// optional, without it this monitor cannot be used in an SPV client, but you may wish to /// avoid this (or call unset_funding_info) on a monitor you wish to send to a watchtower as it /// provides slightly better privacy. pub(super) fn set_funding_info(&mut self, funding_info: OutPoint) { self.funding_txo = Some(funding_info); } pub(super) fn set_their_htlc_base_key(&mut self, their_htlc_base_key: &PublicKey) { self.their_htlc_base_key = Some(their_htlc_base_key.clone()); } pub(super) fn set_their_to_self_delay(&mut self, their_to_self_delay: u16) { self.their_to_self_delay = Some(their_to_self_delay); } pub(super) fn unset_funding_info(&mut self) { self.funding_txo = None; } pub fn get_funding_txo(&self) -> Option { self.funding_txo } /// Serializes into a vec, with various modes for the exposed pub fns fn serialize(&self, for_local_storage: bool) -> Vec { let mut res = Vec::new(); res.push(SERIALIZATION_VERSION); res.push(MIN_SERIALIZATION_VERSION); match self.funding_txo { Some(outpoint) => { res.extend_from_slice(&outpoint.txid[..]); res.extend_from_slice(&byte_utils::be16_to_array(outpoint.index)); }, None => { // We haven't even been initialized...not sure why anyone is serializing us, but // not much to give them. return res; }, } // Set in initial Channel-object creation, so should always be set by now: res.extend_from_slice(&byte_utils::be48_to_array(self.commitment_transaction_number_obscure_factor)); match self.key_storage { KeyStorage::PrivMode { ref revocation_base_key, ref htlc_base_key } => { res.push(0); res.extend_from_slice(&revocation_base_key[..]); res.extend_from_slice(&htlc_base_key[..]); }, KeyStorage::SigsMode { .. } => unimplemented!(), } res.extend_from_slice(&self.delayed_payment_base_key.serialize()); res.extend_from_slice(&self.their_htlc_base_key.as_ref().unwrap().serialize()); match self.their_cur_revocation_points { Some((idx, pubkey, second_option)) => { res.extend_from_slice(&byte_utils::be48_to_array(idx)); res.extend_from_slice(&pubkey.serialize()); match second_option { Some(second_pubkey) => { res.extend_from_slice(&second_pubkey.serialize()); }, None => { res.extend_from_slice(&[0; 33]); }, } }, None => { res.extend_from_slice(&byte_utils::be48_to_array(0)); }, } res.extend_from_slice(&byte_utils::be16_to_array(self.our_to_self_delay)); res.extend_from_slice(&byte_utils::be16_to_array(self.their_to_self_delay.unwrap())); for &(ref secret, ref idx) in self.old_secrets.iter() { res.extend_from_slice(secret); res.extend_from_slice(&byte_utils::be64_to_array(*idx)); } macro_rules! serialize_htlc_in_commitment { ($htlc_output: expr) => { res.push($htlc_output.offered as u8); res.extend_from_slice(&byte_utils::be64_to_array($htlc_output.amount_msat)); res.extend_from_slice(&byte_utils::be32_to_array($htlc_output.cltv_expiry)); res.extend_from_slice(&$htlc_output.payment_hash); res.extend_from_slice(&byte_utils::be32_to_array($htlc_output.transaction_output_index)); } } res.extend_from_slice(&byte_utils::be64_to_array(self.remote_claimable_outpoints.len() as u64)); for (txid, htlc_outputs) in self.remote_claimable_outpoints.iter() { res.extend_from_slice(&txid[..]); res.extend_from_slice(&byte_utils::be64_to_array(htlc_outputs.len() as u64)); for htlc_output in htlc_outputs.iter() { serialize_htlc_in_commitment!(htlc_output); } } { let remote_commitment_txn_on_chain = self.remote_commitment_txn_on_chain.lock().unwrap(); res.extend_from_slice(&byte_utils::be64_to_array(remote_commitment_txn_on_chain.len() as u64)); for (txid, commitment_number) in remote_commitment_txn_on_chain.iter() { res.extend_from_slice(&txid[..]); res.extend_from_slice(&byte_utils::be48_to_array(*commitment_number)); } } if for_local_storage { res.extend_from_slice(&byte_utils::be64_to_array(self.remote_hash_commitment_number.len() as u64)); for (payment_hash, commitment_number) in self.remote_hash_commitment_number.iter() { res.extend_from_slice(payment_hash); res.extend_from_slice(&byte_utils::be48_to_array(*commitment_number)); } } else { res.extend_from_slice(&byte_utils::be64_to_array(0)); } macro_rules! serialize_local_tx { ($local_tx: expr) => { let tx_ser = serialize::serialize(&$local_tx.tx).unwrap(); res.extend_from_slice(&byte_utils::be64_to_array(tx_ser.len() as u64)); res.extend_from_slice(&tx_ser); res.extend_from_slice(&$local_tx.revocation_key.serialize()); res.extend_from_slice(&$local_tx.a_htlc_key.serialize()); res.extend_from_slice(&$local_tx.b_htlc_key.serialize()); res.extend_from_slice(&$local_tx.delayed_payment_key.serialize()); res.extend_from_slice(&byte_utils::be64_to_array($local_tx.feerate_per_kw)); res.extend_from_slice(&byte_utils::be64_to_array($local_tx.htlc_outputs.len() as u64)); for &(ref htlc_output, ref their_sig, ref our_sig) in $local_tx.htlc_outputs.iter() { serialize_htlc_in_commitment!(htlc_output); res.extend_from_slice(&their_sig.serialize_compact(&self.secp_ctx)); res.extend_from_slice(&our_sig.serialize_compact(&self.secp_ctx)); } } } if let Some(ref prev_local_tx) = self.prev_local_signed_commitment_tx { res.push(1); serialize_local_tx!(prev_local_tx); } else { res.push(0); } if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx { res.push(1); serialize_local_tx!(cur_local_tx); } else { res.push(0); } res.extend_from_slice(&byte_utils::be64_to_array(self.payment_preimages.len() as u64)); for payment_preimage in self.payment_preimages.values() { res.extend_from_slice(payment_preimage); } res.extend_from_slice(&byte_utils::be64_to_array(self.destination_script.len() as u64)); res.extend_from_slice(&self.destination_script[..]); res } /// Encodes this monitor into a byte array, suitable for writing to disk. pub fn serialize_for_disk(&self) -> Vec { self.serialize(true) } /// Encodes this monitor into a byte array, suitable for sending to a remote watchtower pub fn serialize_for_watchtower(&self) -> Vec { self.serialize(false) } /// Attempts to decode a serialized monitor pub fn deserialize(data: &[u8]) -> Option { let mut read_pos = 0; macro_rules! read_bytes { ($byte_count: expr) => { { if ($byte_count as usize) + read_pos > data.len() { return None; } read_pos += $byte_count as usize; &data[read_pos - $byte_count as usize..read_pos] } } } let secp_ctx = Secp256k1::new(); macro_rules! unwrap_obj { ($key: expr) => { match $key { Ok(res) => res, Err(_) => return None, } } } let _ver = read_bytes!(1)[0]; let min_ver = read_bytes!(1)[0]; if min_ver > SERIALIZATION_VERSION { return None; } // Technically this can fail and serialize fail a round-trip, but only for serialization of // barely-init'd ChannelMonitors that we can't do anything with. let funding_txo = Some(OutPoint { txid: Sha256dHash::from(read_bytes!(32)), index: byte_utils::slice_to_be16(read_bytes!(2)), }); let commitment_transaction_number_obscure_factor = byte_utils::slice_to_be48(read_bytes!(6)); let key_storage = match read_bytes!(1)[0] { 0 => { KeyStorage::PrivMode { revocation_base_key: unwrap_obj!(SecretKey::from_slice(&secp_ctx, read_bytes!(32))), htlc_base_key: unwrap_obj!(SecretKey::from_slice(&secp_ctx, read_bytes!(32))), } }, _ => return None, }; let delayed_payment_base_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33))); let their_htlc_base_key = Some(unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)))); let their_cur_revocation_points = { let first_idx = byte_utils::slice_to_be48(read_bytes!(6)); if first_idx == 0 { None } else { let first_point = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33))); let second_point_slice = read_bytes!(33); if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 { Some((first_idx, first_point, None)) } else { Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&secp_ctx, second_point_slice))))) } } }; let our_to_self_delay = byte_utils::slice_to_be16(read_bytes!(2)); let their_to_self_delay = Some(byte_utils::slice_to_be16(read_bytes!(2))); let mut old_secrets = [([0; 32], 1 << 48); 49]; for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() { secret.copy_from_slice(read_bytes!(32)); *idx = byte_utils::slice_to_be64(read_bytes!(8)); } macro_rules! read_htlc_in_commitment { () => { { let offered = match read_bytes!(1)[0] { 0 => false, 1 => true, _ => return None, }; let amount_msat = byte_utils::slice_to_be64(read_bytes!(8)); let cltv_expiry = byte_utils::slice_to_be32(read_bytes!(4)); let mut payment_hash = [0; 32]; payment_hash[..].copy_from_slice(read_bytes!(32)); let transaction_output_index = byte_utils::slice_to_be32(read_bytes!(4)); HTLCOutputInCommitment { offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index } } } } let remote_claimable_outpoints_len = byte_utils::slice_to_be64(read_bytes!(8)); if remote_claimable_outpoints_len > data.len() as u64 / 64 { return None; } let mut remote_claimable_outpoints = HashMap::with_capacity(remote_claimable_outpoints_len as usize); for _ in 0..remote_claimable_outpoints_len { let txid = Sha256dHash::from(read_bytes!(32)); let outputs_count = byte_utils::slice_to_be64(read_bytes!(8)); if outputs_count > data.len() as u64 * 32 { return None; } let mut outputs = Vec::with_capacity(outputs_count as usize); for _ in 0..outputs_count { outputs.push(read_htlc_in_commitment!()); } if let Some(_) = remote_claimable_outpoints.insert(txid, outputs) { return None; } } let remote_commitment_txn_on_chain_len = byte_utils::slice_to_be64(read_bytes!(8)); if remote_commitment_txn_on_chain_len > data.len() as u64 / 32 { return None; } let mut remote_commitment_txn_on_chain = HashMap::with_capacity(remote_commitment_txn_on_chain_len as usize); for _ in 0..remote_commitment_txn_on_chain_len { let txid = Sha256dHash::from(read_bytes!(32)); let commitment_number = byte_utils::slice_to_be48(read_bytes!(6)); if let Some(_) = remote_commitment_txn_on_chain.insert(txid, commitment_number) { return None; } } let remote_hash_commitment_number_len = byte_utils::slice_to_be64(read_bytes!(8)); if remote_hash_commitment_number_len > data.len() as u64 / 32 { return None; } let mut remote_hash_commitment_number = HashMap::with_capacity(remote_hash_commitment_number_len as usize); for _ in 0..remote_hash_commitment_number_len { let mut txid = [0; 32]; txid[..].copy_from_slice(read_bytes!(32)); let commitment_number = byte_utils::slice_to_be48(read_bytes!(6)); if let Some(_) = remote_hash_commitment_number.insert(txid, commitment_number) { return None; } } macro_rules! read_local_tx { () => { { let tx_len = byte_utils::slice_to_be64(read_bytes!(8)); let tx: Transaction = unwrap_obj!(serialize::deserialize(read_bytes!(tx_len))); let revocation_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33))); let a_htlc_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33))); let b_htlc_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33))); let delayed_payment_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33))); let feerate_per_kw = byte_utils::slice_to_be64(read_bytes!(8)); let htlc_outputs_len = byte_utils::slice_to_be64(read_bytes!(8)); if htlc_outputs_len > data.len() as u64 / 128 { return None; } let mut htlc_outputs = Vec::with_capacity(htlc_outputs_len as usize); for _ in 0..htlc_outputs_len { htlc_outputs.push((read_htlc_in_commitment!(), unwrap_obj!(Signature::from_compact(&secp_ctx, read_bytes!(64))), unwrap_obj!(Signature::from_compact(&secp_ctx, read_bytes!(64))))); } LocalSignedTx { txid: tx.txid(), tx, revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, feerate_per_kw, htlc_outputs } } } } let prev_local_signed_commitment_tx = match read_bytes!(1)[0] { 0 => None, 1 => { Some(read_local_tx!()) }, _ => return None, }; let current_local_signed_commitment_tx = match read_bytes!(1)[0] { 0 => None, 1 => { Some(read_local_tx!()) }, _ => return None, }; let payment_preimages_len = byte_utils::slice_to_be64(read_bytes!(8)); if payment_preimages_len > data.len() as u64 / 32 { return None; } let mut payment_preimages = HashMap::with_capacity(payment_preimages_len as usize); let mut sha = Sha256::new(); for _ in 0..payment_preimages_len { let mut preimage = [0; 32]; preimage[..].copy_from_slice(read_bytes!(32)); sha.reset(); sha.input(&preimage); let mut hash = [0; 32]; sha.result(&mut hash); if let Some(_) = payment_preimages.insert(hash, preimage) { return None; } } let destination_script_len = byte_utils::slice_to_be64(read_bytes!(8)); let destination_script = Script::from(read_bytes!(destination_script_len).to_vec()); Some(ChannelMonitor { funding_txo, commitment_transaction_number_obscure_factor, key_storage, delayed_payment_base_key, their_htlc_base_key, their_cur_revocation_points, our_to_self_delay, their_to_self_delay, old_secrets, remote_claimable_outpoints, remote_commitment_txn_on_chain: Mutex::new(remote_commitment_txn_on_chain), remote_hash_commitment_number, prev_local_signed_commitment_tx, current_local_signed_commitment_tx, payment_preimages, destination_script, secp_ctx, }) } //TODO: Functions to serialize/deserialize (with different forms depending on which information //we want to leave out (eg funding_txo, etc). /// Can only fail if idx is < get_min_seen_secret pub fn get_secret(&self, idx: u64) -> Result<[u8; 32], HandleError> { for i in 0..self.old_secrets.len() { if (idx & (!((1 << i) - 1))) == self.old_secrets[i].1 { return Ok(ChannelMonitor::derive_secret(self.old_secrets[i].0, i as u8, idx)) } } assert!(idx < self.get_min_seen_secret()); Err(HandleError{err: "idx too low", msg: None}) } pub fn get_min_seen_secret(&self) -> u64 { //TODO This can be optimized? let mut min = 1 << 48; for &(_, idx) in self.old_secrets.iter() { if idx < min { min = idx; } } min } /// Attempts to claim a remote commitment transaction's outputs using the revocation key and /// data in remote_claimable_outpoints. Will directly claim any HTLC outputs which expire at a /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for /// HTLC-Success/HTLC-Timeout transactions, and claim them using the revocation key (if /// applicable) as well. fn check_spend_remote_transaction(&self, tx: &Transaction, height: u32) -> Vec { // Most secp and related errors trying to create keys means we have no hope of constructing // a spend transaction...so we return no transactions to broadcast let mut txn_to_broadcast = Vec::new(); macro_rules! ignore_error { ( $thing : expr ) => { match $thing { Ok(a) => a, Err(_) => return txn_to_broadcast } }; } let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers! let per_commitment_option = self.remote_claimable_outpoints.get(&commitment_txid); let commitment_number = (((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor; if commitment_number >= self.get_min_seen_secret() { let secret = self.get_secret(commitment_number).unwrap(); let per_commitment_key = ignore_error!(SecretKey::from_slice(&self.secp_ctx, &secret)); let (revocation_pubkey, b_htlc_key) = match self.key_storage { KeyStorage::PrivMode { ref revocation_base_key, ref htlc_base_key } => { let per_commitment_point = ignore_error!(PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key)); (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &ignore_error!(PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key)))), ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &ignore_error!(PublicKey::from_secret_key(&self.secp_ctx, &htlc_base_key))))) }, KeyStorage::SigsMode { ref revocation_base_key, ref htlc_base_key, .. } => { let per_commitment_point = ignore_error!(PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key)); (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &revocation_base_key)), ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &htlc_base_key))) }, }; let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &ignore_error!(PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key)), &self.delayed_payment_base_key)); let a_htlc_key = match self.their_htlc_base_key { None => return txn_to_broadcast, Some(their_htlc_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &ignore_error!(PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key)), &their_htlc_base_key)), }; let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.our_to_self_delay, &delayed_key); let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh(); let mut total_value = 0; let mut values = Vec::new(); let mut inputs = Vec::new(); let mut htlc_idxs = Vec::new(); for (idx, outp) in tx.output.iter().enumerate() { if outp.script_pubkey == revokeable_p2wsh { inputs.push(TxIn { prev_hash: commitment_txid, prev_index: idx as u32, script_sig: Script::new(), sequence: 0xfffffffd, witness: Vec::new(), }); htlc_idxs.push(None); values.push(outp.value); total_value += outp.value; break; // There can only be one of these } } macro_rules! sign_input { ($sighash_parts: expr, $input: expr, $htlc_idx: expr, $amount: expr) => { { let (sig, redeemscript) = match self.key_storage { KeyStorage::PrivMode { ref revocation_base_key, .. } => { let redeemscript = if $htlc_idx.is_none() { revokeable_redeemscript.clone() } else { let htlc = &per_commitment_option.unwrap()[$htlc_idx.unwrap()]; chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey) }; let sighash = ignore_error!(Message::from_slice(&$sighash_parts.sighash_all(&$input, &redeemscript, $amount)[..])); let revocation_key = ignore_error!(chan_utils::derive_private_revocation_key(&self.secp_ctx, &per_commitment_key, &revocation_base_key)); (ignore_error!(self.secp_ctx.sign(&sighash, &revocation_key)), redeemscript) }, KeyStorage::SigsMode { .. } => { unimplemented!(); } }; $input.witness.push(sig.serialize_der(&self.secp_ctx).to_vec()); $input.witness[0].push(SigHashType::All as u8); if $htlc_idx.is_none() { $input.witness.push(vec!(1)); } else { $input.witness.push(revocation_pubkey.serialize().to_vec()); } $input.witness.push(redeemscript.into_vec()); } } } if let Some(per_commitment_data) = per_commitment_option { inputs.reserve_exact(per_commitment_data.len()); for (idx, htlc) in per_commitment_data.iter().enumerate() { let expected_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey); if htlc.transaction_output_index as usize >= tx.output.len() || tx.output[htlc.transaction_output_index as usize].value != htlc.amount_msat / 1000 || tx.output[htlc.transaction_output_index as usize].script_pubkey != expected_script.to_v0_p2wsh() { return txn_to_broadcast; // Corrupted per_commitment_data, fuck this user } let input = TxIn { prev_hash: commitment_txid, prev_index: htlc.transaction_output_index, script_sig: Script::new(), sequence: 0xfffffffd, witness: Vec::new(), }; if htlc.cltv_expiry > height + CLTV_SHARED_CLAIM_BUFFER { inputs.push(input); htlc_idxs.push(Some(idx)); values.push(tx.output[htlc.transaction_output_index as usize].value); total_value += htlc.amount_msat / 1000; } else { let mut single_htlc_tx = Transaction { version: 2, lock_time: 0, input: vec![input], output: vec!(TxOut { script_pubkey: self.destination_script.clone(), value: htlc.amount_msat / 1000, //TODO: - fee }), }; let sighash_parts = bip143::SighashComponents::new(&single_htlc_tx); sign_input!(sighash_parts, single_htlc_tx.input[0], Some(idx), htlc.amount_msat / 1000); txn_to_broadcast.push(single_htlc_tx); // TODO: This is not yet tested in ChannelManager! } } } if !inputs.is_empty() || !txn_to_broadcast.is_empty() { // ie we're confident this is actually ours // We're definitely a remote commitment transaction! // TODO: Register commitment_txid with the ChainWatchInterface! self.remote_commitment_txn_on_chain.lock().unwrap().insert(commitment_txid, commitment_number); } if inputs.is_empty() { return txn_to_broadcast; } // Nothing to be done...probably a false positive/local tx let outputs = vec!(TxOut { script_pubkey: self.destination_script.clone(), value: total_value, //TODO: - fee }); let mut spend_tx = Transaction { version: 2, lock_time: 0, input: inputs, output: outputs, }; let mut values_drain = values.drain(..); let sighash_parts = bip143::SighashComponents::new(&spend_tx); for (input, htlc_idx) in spend_tx.input.iter_mut().zip(htlc_idxs.iter()) { let value = values_drain.next().unwrap(); sign_input!(sighash_parts, input, htlc_idx, value); } txn_to_broadcast.push(spend_tx); } else if let Some(per_commitment_data) = per_commitment_option { // While this isn't useful yet, there is a potential race where if a counterparty // revokes a state at the same time as the commitment transaction for that state is // confirmed, and the watchtower receives the block before the user, the user could // upload a new ChannelMonitor with the revocation secret but the watchtower has // already processed the block, resulting in the remote_commitment_txn_on_chain entry // not being generated by the above conditional. Thus, to be safe, we go ahead and // insert it here. self.remote_commitment_txn_on_chain.lock().unwrap().insert(commitment_txid, commitment_number); if let Some(revocation_points) = self.their_cur_revocation_points { let revocation_point_option = if revocation_points.0 == commitment_number { Some(&revocation_points.1) } else if let Some(point) = revocation_points.2.as_ref() { if revocation_points.0 == commitment_number + 1 { Some(point) } else { None } } else { None }; if let Some(revocation_point) = revocation_point_option { let (revocation_pubkey, b_htlc_key) = match self.key_storage { KeyStorage::PrivMode { ref revocation_base_key, ref htlc_base_key } => { (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, revocation_point, &ignore_error!(PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key)))), ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &ignore_error!(PublicKey::from_secret_key(&self.secp_ctx, &htlc_base_key))))) }, KeyStorage::SigsMode { ref revocation_base_key, ref htlc_base_key, .. } => { (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, revocation_point, &revocation_base_key)), ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &htlc_base_key))) }, }; let a_htlc_key = match self.their_htlc_base_key { None => return txn_to_broadcast, Some(their_htlc_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &their_htlc_base_key)), }; let mut total_value = 0; let mut values = Vec::new(); let mut inputs = Vec::new(); macro_rules! sign_input { ($sighash_parts: expr, $input: expr, $amount: expr, $preimage: expr) => { { let (sig, redeemscript) = match self.key_storage { KeyStorage::PrivMode { ref htlc_base_key, .. } => { let htlc = &per_commitment_option.unwrap()[$input.sequence as usize]; let redeemscript = chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey); let sighash = ignore_error!(Message::from_slice(&$sighash_parts.sighash_all(&$input, &redeemscript, $amount)[..])); let htlc_key = ignore_error!(chan_utils::derive_private_key(&self.secp_ctx, revocation_point, &htlc_base_key)); (ignore_error!(self.secp_ctx.sign(&sighash, &htlc_key)), redeemscript) }, KeyStorage::SigsMode { .. } => { unimplemented!(); } }; $input.witness.push(sig.serialize_der(&self.secp_ctx).to_vec()); $input.witness[0].push(SigHashType::All as u8); $input.witness.push($preimage); $input.witness.push(redeemscript.into_vec()); } } } for (idx, htlc) in per_commitment_data.iter().enumerate() { if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) { let input = TxIn { prev_hash: commitment_txid, prev_index: htlc.transaction_output_index, script_sig: Script::new(), sequence: idx as u32, // reset to 0xfffffffd in sign_input witness: Vec::new(), }; if htlc.cltv_expiry > height + CLTV_SHARED_CLAIM_BUFFER { inputs.push(input); values.push((tx.output[htlc.transaction_output_index as usize].value, payment_preimage)); total_value += htlc.amount_msat / 1000; } else { let mut single_htlc_tx = Transaction { version: 2, lock_time: 0, input: vec![input], output: vec!(TxOut { script_pubkey: self.destination_script.clone(), value: htlc.amount_msat / 1000, //TODO: - fee }), }; let sighash_parts = bip143::SighashComponents::new(&single_htlc_tx); sign_input!(sighash_parts, single_htlc_tx.input[0], htlc.amount_msat / 1000, payment_preimage.to_vec()); txn_to_broadcast.push(single_htlc_tx); } } } if inputs.is_empty() { return txn_to_broadcast; } // Nothing to be done...probably a false positive/local tx let outputs = vec!(TxOut { script_pubkey: self.destination_script.clone(), value: total_value, //TODO: - fee }); let mut spend_tx = Transaction { version: 2, lock_time: 0, input: inputs, output: outputs, }; let mut values_drain = values.drain(..); let sighash_parts = bip143::SighashComponents::new(&spend_tx); for input in spend_tx.input.iter_mut() { let value = values_drain.next().unwrap(); sign_input!(sighash_parts, input, value.0, value.1.to_vec()); } txn_to_broadcast.push(spend_tx); } } } else { //TODO: For each input check if its in our remote_commitment_txn_on_chain map! } txn_to_broadcast } fn broadcast_by_local_state(&self, local_tx: &LocalSignedTx) -> Vec { let mut res = Vec::with_capacity(local_tx.htlc_outputs.len()); for &(ref htlc, ref their_sig, ref our_sig) in local_tx.htlc_outputs.iter() { if htlc.offered { let mut htlc_timeout_tx = chan_utils::build_htlc_transaction(&local_tx.txid, local_tx.feerate_per_kw, self.their_to_self_delay.unwrap(), htlc, &local_tx.delayed_payment_key, &local_tx.revocation_key); htlc_timeout_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy htlc_timeout_tx.input[0].witness.push(their_sig.serialize_der(&self.secp_ctx).to_vec()); htlc_timeout_tx.input[0].witness[1].push(SigHashType::All as u8); htlc_timeout_tx.input[0].witness.push(our_sig.serialize_der(&self.secp_ctx).to_vec()); htlc_timeout_tx.input[0].witness[2].push(SigHashType::All as u8); htlc_timeout_tx.input[0].witness.push(Vec::new()); htlc_timeout_tx.input[0].witness.push(chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &local_tx.a_htlc_key, &local_tx.b_htlc_key, &local_tx.revocation_key).into_vec()); res.push(htlc_timeout_tx); } else { if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) { let mut htlc_success_tx = chan_utils::build_htlc_transaction(&local_tx.txid, local_tx.feerate_per_kw, self.their_to_self_delay.unwrap(), htlc, &local_tx.delayed_payment_key, &local_tx.revocation_key); htlc_success_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy htlc_success_tx.input[0].witness.push(their_sig.serialize_der(&self.secp_ctx).to_vec()); htlc_success_tx.input[0].witness[1].push(SigHashType::All as u8); htlc_success_tx.input[0].witness.push(our_sig.serialize_der(&self.secp_ctx).to_vec()); htlc_success_tx.input[0].witness[2].push(SigHashType::All as u8); htlc_success_tx.input[0].witness.push(payment_preimage.to_vec()); htlc_success_tx.input[0].witness.push(chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &local_tx.a_htlc_key, &local_tx.b_htlc_key, &local_tx.revocation_key).into_vec()); res.push(htlc_success_tx); } } } res } /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet) /// revoked using data in local_claimable_outpoints. /// Should not be used if check_spend_revoked_transaction succeeds. fn check_spend_local_transaction(&self, tx: &Transaction, _height: u32) -> Vec { let commitment_txid = tx.txid(); if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx { if local_tx.txid == commitment_txid { return self.broadcast_by_local_state(local_tx); } } if let &Some(ref local_tx) = &self.prev_local_signed_commitment_tx { if local_tx.txid == commitment_txid { return self.broadcast_by_local_state(local_tx); } } Vec::new() } fn block_connected(&self, txn_matched: &[&Transaction], height: u32, broadcaster: &BroadcasterInterface) { for tx in txn_matched { for txin in tx.input.iter() { if self.funding_txo.is_none() || (txin.prev_hash == self.funding_txo.unwrap().txid && txin.prev_index == self.funding_txo.unwrap().index as u32) { let mut txn = self.check_spend_remote_transaction(tx, height); if txn.is_empty() { txn = self.check_spend_local_transaction(tx, height); } for tx in txn.iter() { broadcaster.broadcast_transaction(tx); } } } } if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx { let mut needs_broadcast = false; for &(ref htlc, _, _) in cur_local_tx.htlc_outputs.iter() { if htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER { if htlc.offered || self.payment_preimages.contains_key(&htlc.payment_hash) { needs_broadcast = true; } } } if needs_broadcast { broadcaster.broadcast_transaction(&cur_local_tx.tx); for tx in self.broadcast_by_local_state(&cur_local_tx) { broadcaster.broadcast_transaction(&tx); } } } } pub fn would_broadcast_at_height(&self, height: u32) -> bool { if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx { for &(ref htlc, _, _) in cur_local_tx.htlc_outputs.iter() { if htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER { if htlc.offered || self.payment_preimages.contains_key(&htlc.payment_hash) { return true; } } } } false } } #[cfg(test)] mod tests { use bitcoin::util::misc::hex_bytes; use bitcoin::blockdata::script::Script; use bitcoin::blockdata::transaction::Transaction; use crypto::digest::Digest; use ln::channelmonitor::ChannelMonitor; use ln::chan_utils::{HTLCOutputInCommitment, TxCreationKeys}; use util::sha2::Sha256; use secp256k1::key::{SecretKey,PublicKey}; use secp256k1::{Secp256k1, Signature}; use rand::{thread_rng,Rng}; #[test] fn test_per_commitment_storage() { // Test vectors from BOLT 3: let mut secrets: Vec<[u8; 32]> = Vec::new(); let mut monitor: ChannelMonitor; let secp_ctx = Secp256k1::new(); macro_rules! test_secrets { () => { let mut idx = 281474976710655; for secret in secrets.iter() { assert_eq!(monitor.get_secret(idx).unwrap(), *secret); idx -= 1; } assert_eq!(monitor.get_min_seen_secret(), idx + 1); assert!(monitor.get_secret(idx).is_err()); }; } { // insert_secret correct sequence monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &PublicKey::new(), &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); monitor.provide_secret(281474976710648, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); } { // insert_secret #1 incorrect monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &PublicKey::new(), &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); assert_eq!(monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap_err().err, "Previous secret did not match new one"); } { // insert_secret #2 incorrect (#1 derived from incorrect) monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &PublicKey::new(), &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); assert_eq!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap_err().err, "Previous secret did not match new one"); } { // insert_secret #3 incorrect monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &PublicKey::new(), &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); assert_eq!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap_err().err, "Previous secret did not match new one"); } { // insert_secret #4 incorrect (1,2,3 derived from incorrect) monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &PublicKey::new(), &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("ba65d7b0ef55a3ba300d4e87af29868f394f8f138d78a7011669c79b37b936f4").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone(), None).unwrap_err().err, "Previous secret did not match new one"); } { // insert_secret #5 incorrect monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &PublicKey::new(), &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); assert_eq!(monitor.provide_secret(281474976710650, secrets.last().unwrap().clone(), None).unwrap_err().err, "Previous secret did not match new one"); } { // insert_secret #6 incorrect (5 derived from incorrect) monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &PublicKey::new(), &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("b7e76a83668bde38b373970155c868a653304308f9896692f904a23731224bb1").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone(), None).unwrap_err().err, "Previous secret did not match new one"); } { // insert_secret #7 incorrect monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &PublicKey::new(), &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("e7971de736e01da8ed58b94c2fc216cb1dca9e326f3a96e7194fe8ea8af6c0a3").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone(), None).unwrap_err().err, "Previous secret did not match new one"); } { // insert_secret #8 incorrect monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &PublicKey::new(), &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone(), None).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex_bytes("a7efbc61aac46d34f77778bac22c8a20c6a46ca460addc49009bda875ec88fa4").unwrap()); assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone(), None).unwrap_err().err, "Previous secret did not match new one"); } } #[test] fn test_prune_preimages() { let secp_ctx = Secp256k1::new(); let dummy_sig = Signature::from_der(&secp_ctx, &hex_bytes("3045022100fa86fa9a36a8cd6a7bb8f06a541787d51371d067951a9461d5404de6b928782e02201c8b7c334c10aed8976a3a465be9a28abff4cb23acbf00022295b378ce1fa3cd").unwrap()[..]).unwrap(); macro_rules! dummy_keys { () => { TxCreationKeys { per_commitment_point: PublicKey::new(), revocation_key: PublicKey::new(), a_htlc_key: PublicKey::new(), b_htlc_key: PublicKey::new(), a_delayed_payment_key: PublicKey::new(), b_payment_key: PublicKey::new(), } } } let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() }; let mut preimages = Vec::new(); { let mut rng = thread_rng(); for _ in 0..20 { let mut preimage = [0; 32]; rng.fill_bytes(&mut preimage); let mut sha = Sha256::new(); sha.input(&preimage); let mut hash = [0; 32]; sha.result(&mut hash); preimages.push((preimage, hash)); } } macro_rules! preimages_slice_to_htlc_outputs { ($preimages_slice: expr) => { { let mut res = Vec::new(); for (idx, preimage) in $preimages_slice.iter().enumerate() { res.push(HTLCOutputInCommitment { offered: true, amount_msat: 0, cltv_expiry: 0, payment_hash: preimage.1.clone(), transaction_output_index: idx as u32, }); } res } } } macro_rules! preimages_to_local_htlcs { ($preimages_slice: expr) => { { let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice); let res: Vec<_> = inp.drain(..).map(|e| { (e, dummy_sig.clone(), dummy_sig.clone()) }).collect(); res } } } macro_rules! test_preimages_exist { ($preimages_slice: expr, $monitor: expr) => { for preimage in $preimages_slice { assert!($monitor.payment_preimages.contains_key(&preimage.1)); } } } // Prune with one old state and a local commitment tx holding a few overlaps with the // old state. let mut monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &PublicKey::new(), &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new()); monitor.set_their_to_self_delay(10); monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..10])); monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655); monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654); monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653); monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652); for &(ref preimage, ref hash) in preimages.iter() { monitor.provide_payment_preimage(hash, preimage); } // Now provide a secret, pruning preimages 10-15 let mut secret = [0; 32]; secret[0..32].clone_from_slice(&hex_bytes("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secret.clone(), None).unwrap(); assert_eq!(monitor.payment_preimages.len(), 15); test_preimages_exist!(&preimages[0..10], monitor); test_preimages_exist!(&preimages[15..20], monitor); // Now provide a further secret, pruning preimages 15-17 secret[0..32].clone_from_slice(&hex_bytes("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secret.clone(), None).unwrap(); assert_eq!(monitor.payment_preimages.len(), 13); test_preimages_exist!(&preimages[0..10], monitor); test_preimages_exist!(&preimages[17..20], monitor); // Now update local commitment tx info, pruning only element 18 as we still care about the // previous commitment tx's preimages too monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..5])); secret[0..32].clone_from_slice(&hex_bytes("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secret.clone(), None).unwrap(); assert_eq!(monitor.payment_preimages.len(), 12); test_preimages_exist!(&preimages[0..10], monitor); test_preimages_exist!(&preimages[18..20], monitor); // But if we do it again, we'll prune 5-10 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..3])); secret[0..32].clone_from_slice(&hex_bytes("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secret.clone(), None).unwrap(); assert_eq!(monitor.payment_preimages.len(), 5); test_preimages_exist!(&preimages[0..5], monitor); } // Further testing is done in the ChannelManager integration tests. }