While users could easily figure it out based on the set of HTLC
descriptors included within, we already track it within the
`OnchainTxHandler`, so we might as well expose it to users as a
nice-to-have. It's also yet another thing they must get right to ensure
their HTLC transaction broadcasts are valid.
This is largely motivated by some follow-up work for anchors that will
introduce an event handler for `BumpTransaction` events, which we can
now include in this new top-level `events` module.
This results in a new, potentially redundant, `ChannelMonitorUpdate`
that must be applied to `ChannelMonitor`s to broadcast the holder's
latest commitment transaction.
This is a behavior change for anchor channels since their commitments
may require additional fees to be attached through a child anchor
transaction. Recall that anchor transactions are only generated by the
event consumer after processing a `BumpTransactionEvent::ChannelClose`
event, which is yielded after applying a
`ChannelMonitorUpdateStep::ChannelForceClosed` monitor update. Assuming
the node operator is not watching the mempool to generate these anchor
transactions without LDK, an anchor channel which we had to fail when
deserializing our `ChannelManager` would have its commitment transaction
broadcast by itself, potentially exposing the node operator to loss of
funds if the commitment transaction's fee is not enough to be accepted
into the network's mempools.
This is purely a refactor that does not change the InitFeatures
advertised by a ChannelManager. This allows users to configure which
features should be advertised based on the values of `UserConfig`. While
there aren't any existing features currently leveraging this behavior,
it will be used by the upcoming anchors_zero_fee_htlc_tx feature.
The UserConfig dependency on provided_init_features caused most
callsites of the main test methods responsible for opening channels to
be updated. This commit foregos that completely by no longer requiring
the InitFeatures of each side to be provided to these methods. The
methods already require a reference to each node's ChannelManager to
open the channel, so we use that same reference to obtain their
InitFeatures. A way to override such features was required for some
tests, so a new `override_init_features` config option now exists on
the test harness.
This change follows the rationale of commit 62236c7 and addresses the
last remaining redundant local commitment broadcast.
There's no need to broadcast our local commitment transaction if we've
already seen a confirmed one as it'll be immediately rejected as a
duplicate/conflict.
This will also help prevent dispatching spurious events for bumping
commitment and HTLC transactions through anchor outputs since the
dispatch for said events follows the same flow as our usual commitment
broadcast.
At the end of our `monitor_tests`, which test `ChannelMonitor`
`SpendableOutputs` and claimable `Balance`s, add new checks that
ensure that, if we're using the new
`ConnectStyle::HighlyRedundantTransactionsFirstSkippingBlocks`, we
can replay the full chain without getting redundant events or
`Balance`s.
In c986e52ce8, an `MppId` was added
to `HTLCSource` objects as a way of correlating HTLCs which belong
to the same payment when the `ChannelManager` sees an HTLC
succeed/fail. This allows it to have awareness of the state of all
HTLCs in a payment when it generates the ultimate user-facing
payment success/failure events. This was used in the same PR to
avoid generating duplicative success/failure events for a single
payment.
Because the field was only used as an internal token to correlate
HTLCs, and retries were not supported, it was generated randomly by
calling the `KeysInterface`'s 32-byte random-fetching function.
This also provided a backwards-compatibility story as the existing
HTLC randomization key was re-used for older clients.
In 28eea12bbe `MppId` was renamed to
the current `PaymentId` which was then used expose the
`retry_payment` interface, allowing users to send new HTLCs which
are considered a part of an existing payment.
At no point has the payment-sending API seriously considered
idempotency, a major drawback which leaves the API unsafe in most
deployments. Luckily, there is a simple solution - because the
`PaymentId` must be unique, and because payment information for a
given payment is held for several blocks after a payment
completes/fails, it represents an obvious idempotency token.
Here we simply require the user provide the `PaymentId` directly in
`send_payment`, allowing them to use whatever token they may
already have for a payment's idempotency token.
When our counterparty is the payment destination and we receive
an `HTLCFailReason::Reason` in `fail_htlc_backwards_internal` we
currently always set `rejected_by_dest` in the `PaymentPathFailed`
event, implying the HTLC should *not* be retried.
There are a number of cases where we use `HTLCFailReason::Reason`,
but most should reasonably be treated as retryable even if our
counterparty was the destination (i.e. `!rejected_by_dest`):
* If an HTLC times out on-chain, this doesn't imply that the
payment is no longer retryable, though the peer may well be
offline so retrying may not be very useful,
* If a commitment transaction "containing" a dust HTLC is
confirmed on-chain, this definitely does not imply the payment
is no longer retryable
* If the channel we intended to relay over was closed (or
force-closed) we should retry over another path,
* If the channel we intended to relay over did not have enough
capacity we should retry over another path,
* If we received a update_fail_malformed_htlc message from our
peer, we likely should *not* retry, however this should be
exceedingly rare, and appears to nearly never appear in practice
Thus, this commit simply disables the behavior here, opting to
treat all `HTLCFailReason::Reason` errors as retryable.
Note that prior to 93e645daf4 this
change would not have made sense as it would have resulted in us
retrying the payment over the same channel in some cases, however
we now "blame" our own channel and will avoid it when routing for
the same payment.
If we don't currently have the preimage for an inbound HTLC, that
does not guarantee we can never claim it, but instead only that we
cannot claim it unless we receive the preimage from the channel we
forwarded the channel out on.
Thus, we cannot consider a channel to have no claimable balances if
the only remaining output on the commitment ransaction is an
inbound HTLC for which we do not have the preimage, as we may be
able to claim it in the future.
This commit addresses this issue by adding a new `Balance` variant
- `MaybePreimageClaimableHTLCAwaitingTimeout`, which is generated
until the HTLC output is spent.
Fixes#1620
This uses the various new tracking added in the prior commits to
expose a new `Balance` type - `CounterpartyRevokedOutputClaimable`.
Some nontrivial work is required, however, as we now have to track
HTLC outputs as spendable in a transaction that comes *after* an
HTLC-Success/HTLC-Timeout transaction, which we previously didn't
need to do. Thus, we have to check if an
`onchain_events_awaiting_threshold_conf` event spends a commitment
transaction's HTLC output while walking events. Further, because
we now need to track HTLC outputs after the
HTLC-Success/HTLC-Timeout confirms, and because we have to track
the counterparty's `to_self` output as a contentious output which
could be claimed by either party, we have to examine the
`OnchainTxHandler`'s set of outputs to spend when determining if
certain outputs are still spendable.
Two new tests are added which test various different transaction
formats, and hopefully provide good test coverage of the various
revoked output paths.
When we see a counterparty revoked commitment transaction on-chain
we shouldn't immediately queue up HTLCs present in it for
resolution until we have spent the HTLC outputs in some kind of
claim transaction.
In order to do so, we first have to change the
`fail_unbroadcast_htlcs!()` call to provide it with the HTLCs which
are present in the (revoked) commitment transaction which was
broadcast. However, this is not sufficient - because all of those
HTLCs had their `HTLCSource` removed when the commitment
transaction was revoked, we also have to update
`fail_unbroadcast_htlcs` to check the payment hash and amount when
the `HTLCSource` is `None`.
Somewhat surprisingly, several tests actually explicitly tested for
the old behavior, which required amending to pass with the new
changes.
Finally, this adds a debug assertion when writing `ChannelMonitor`s
to ensure `HTLCSource`s do not leak.
When handling the broadcast of a local commitment transactions
(with associated CSV delays prior to spendability), we incorrectly
handled the CSV delays on HTLC transactions. This caused us to miss
spendable outputs for HTLCs which were awaiting a CSV delay.
Further, because of this, we could hit an assertion as
`get_claimable_balances` asserted that HTLCs were resolved after
the funding spend was resolved, which was not true if the HTLC did
not have a CSV delay attached (due to the above bug or due to it
being an HTLC claim by our counterparty).
This fixes both bugs, also converting some assertions to
`debug_assert`s to avoid future issues as balance mis-calculation
is not currently an indication of potential funds loss.
Thanks to Cash App for reporting this bug.
A single PaymentSent event is generated when a payment is fulfilled.
This is occurs when the preimage is revealed on the first claimed HTLC.
For subsequent HTLCs, the event is not generated.
In order to score channels involved with a successful payments, the
scorer must be notified of each successful path involved in the payment.
Add a PaymentPathSuccessful event for this purpose. Generate it whenever
a part is removed from a pending outbound payment. This avoids duplicate
events when reconnecting to a peer.
Exposing a `RwLock<HashMap<>>` directly was always a bit strange,
and in upcoming changes we'd like to change the internal
datastructure in `ChainMonitor`.
Further, the use of `RwLock` and `HashMap` meant we weren't able
to expose the ChannelMonitors themselves to users in bindings,
leaving a bindings/rust API gap.
Thus, we take this opportunity go expose ChannelMonitors directly
via a wrapper, hiding the internals of `ChainMonitor` behind
getters. We also update tests to use the new API.
The interface for get_route will change to take a scorer. Using
get_route_and_payment_hash whenever possible allows for keeping the
scorer inside get_route_and_payment_hash rather than at every call site.
Replace get_route with get_route_and_payment_hash wherever possible.
Additionally, update get_route_and_payment_hash to use the known invoice
features and the sending node's logger.
When we detect a channel `is_shutdown()` or call on it
`force_shutdown()`, we notify the user with a Event::ChannelClosed
informing about the id and closure reason.
In general, we should always allow users to query for how much is
currently in-flight being claimed on-chain at any time.
This does so by examining the confirmed claims on-chain and
breaking down what is left to be claimed into a new
`ClaimableBalance` enum.
Fixes#995.
MessageSendEvent::PaymentFailureNetworkUpdate served as a hack to pass
an HTLCFailChannelUpdate from ChannelManager to NetGraphMsgHandler via
PeerManager. Instead, remove the event entirely and move the contained
data (renamed NetworkUpdate) to Event::PaymentFailed to be processed by
an event handler.
If we forward an HTLC to our counterparty, but we force-closed the
channel before our counterparty provides us an updated commitment
transaction, we'll end up with a commitment transaction that does
not contain the HTLC which we attempted to forward. In this case,
we need to wait `ANTI_REORG_DELAY` blocks and then fail back the
HTLC as there is no way for us to learn the preimage and the
confirmed commitment transaction paid us the value of the HTLC.
However, check_spend_holder_transaction did not do this - it
instead only looked for dust HTLCs in the confirmed commitment
transaction, paying no attention to what other HTLCs may exist that
are missed.
This will eventually lead to channel force-closure as the channel
on which we received the inbound HTLC to forward will be closed in
time for the initial sender to claim the HTLC on-chain.