and replace payment_secret with encrypted metadata
See docs on `inbound_payment::verify` for details
Also add min_value checks to all create_inbound_payment* methods
When a payment fails, a payer needs to know when they can consider
a payment as fully-failed, and when only some of the HTLCs in the
payment have failed. This isn't possible with the current event
scheme, as discovered recently and as described in the previous
commit.
This adds a new event which describes when a payment is fully and
irrevocably failed, generating it only after the payment has
expired or been marked as expired with
`ChannelManager::mark_retries_exceeded` *and* all HTLCs for it
have failed. With this, a payer can more simply deduce when a
payment has failed and use that to remove payment state or
finalize a payment failure.
When a payer gives up trying to retry a payment, they don't know
for sure what the current state of the event queue is.
Specifically, they cannot be sure that there are not multiple
additional `PaymentPathFailed` or even `PaymentSuccess` events
pending which they will see later. Thus, they have a very hard
time identifying whether a payment has truly failed (and informing
the UI of that fact) or if it is still pending. See [1] for more
information.
In order to avoid this mess, we will resolve it here by having the
payer give `ChannelManager` a bit more information - when they
have given up on a payment - and using that to generate a
`PaymentFailed` event when all paths have failed.
This commit adds the neccessary storage and changes for the new
state inside `ChannelManager` and a public method to mark a payment
as failed, the next few commits will add the new `Event` and use
the new features in our `PaymentRetrier`.
[1] https://github.com/lightningdevkit/rust-lightning/issues/1164
During event handling, ChannelManager methods may need to be called as
indicated in the Event documentation. Ensure that these calls are
idempotent for the same event rather than panicking. This allows users
to persist events for later handling without needing to worry about
processing the same event twice (e.g., if ChannelManager is not
persisted but the events were, the restarted ChannelManager would return
some of the same events).
A peer providing a channel_reserve_satoshis of 0 (or less than our
dust limit) is insecure, but only for them. Because some LSPs do it
with some level of trust of the clients (for a substantial UX
improvement), we explicitly allow it. Because its unlikely to
happen often in normal testing, we test it explicitly here.
A single PaymentSent event is generated when a payment is fulfilled.
This is occurs when the preimage is revealed on the first claimed HTLC.
For subsequent HTLCs, the event is not generated.
In order to score channels involved with a successful payments, the
scorer must be notified of each successful path involved in the payment.
Add a PaymentPathSuccessful event for this purpose. Generate it whenever
a part is removed from a pending outbound payment. This avoids duplicate
events when reconnecting to a peer.
In upcoming commits, we'll be making the payment secret and payment hash/preimage
derivable from info about the payment + a node secret. This means we don't
need to store any info about incoming payments and can eventually get rid of the
channelmanager::pending_inbound_payments map.
Traits in top-level modules is somewhat confusing - generally
top-level modules are just organizational modules and don't contain
things themselves, instead placing traits and structs in
sub-modules. Further, its incredibly awkward to have a `scorer`
sub-module, but only have a single struct in it, with the relevant
trait it is the only implementation of somewhere else. Not having
`Score` in the `scorer` sub-module is further confusing because
it's the only module anywhere that references scoring at all.
We currently assume our counterparty is naive and misconfigured and
may force-close a channel to get an HTLC we just forwarded them.
There shouldn't be any reason to do this - we don't have any such
bug, and we shouldn't start by assuming our counterparties are
buggy. Worse, this results in refusing to forward payments today,
failing HTLCs for largely no reason.
Instead, we keep a fairly conservative check, but not one which
will fail HTLC forwarding spuriously - testing only that the HTLC
doesn't expire for a few blocks from now.
Fixes#1114.
If we send a payment and fail to update the first-hop channel state
with a `PermanentFailure` ChannelMonitorUpdateErr, we would have an
entry in our pending payments map, but possibly not return the
PaymentId back to the user to retry the payment, leading to a (rare
and relatively minor) memory leak.
Scorer uses time to determine how much to penalize a channel after a
failure occurs. Parameterizing it by time cleans up the code such that
no-std support is in a single AlwaysPresent struct, which implements the
Time trait. Time is implemented for std::time::Instant when std is
available.
This parameterization also allows for deterministic testing since a
clock could be devised to advance forward as needed.
As payments fail, the channel responsible for the failure may be
penalized. Implement Scorer::payment_path_failed to penalize the failed
channel using a configured penalty. As time passes, the penalty is
reduced using exponential decay, though penalties will accumulate if the
channel continues to fail. The decay interval is also configurable.
An upcoming Router interface will be used for finding a Route both when
initially sending a payment and also when retrying failed payment paths.
Unify the three varieties of get_route so the interface can consist of a
single method implemented by the new `find_route` method. Give get_route
pub(crate) visibility so it can still be used in tests.
The payment_hash may not uniquely identify the payment if it has been
reused. Include the payment_id in PaymentSent events so it can
correlated with the send_payment call.
This stores and tracks HTLC payee information with HTLCSource info,
allowing us to provide it back to the user if the HTLC fails and
ensuring persistence by keeping it with the HTLC itself as it
passes between Channel and ChannelMonitor.
When a payment path fails, it may be retried. Typically, this means
re-computing the route after updating the NetworkGraph and channel
scores in order to avoid the failing hop. The last hop in
PaymentPathFailed's path field contains the pubkey, amount, and CLTV
values needed to pass to get_route. However, it does not contain the
payee's features and route hints from the invoice.
Include the entire set of parameters in PaymentPathRetry and add it to
the PaymentPathFailed event. Add a get_retry_route wrapper around
get_route that takes PaymentPathRetry. This allows an EventHandler to
retry failed payment paths using the payee's route hints and features.
A payee can be identified by a pubkey and optionally have an associated
set of invoice features and route hints. Use this in get_route instead
of three separate parameters. This may be included in PaymentPathFailed
later to use when finding a new route.
If we go to send a payment, add the HTLC(s) to the channel(s),
commit the ChannelMonitor updates to disk, and then crash, we'll
come back up with no pending payments but HTLC(s) ready to be
claim/failed.
This makes it rather impractical to write a payment sender/retryer,
as you cannot guarantee atomicity - you cannot guarantee you'll
have retry data persisted even if the HTLC(s) are actually pending.
Because ChannelMonitors are *the* atomically-persisted data in LDK,
we lean on their current HTLC data to figure out what HTLC(s) are a
part of an outbound payment, rebuilding the pending payments list
on reload.