We only use it to check the amount when processing MPP parts, but
store the full object (including new payment metadata) in it.
Because we now store the amount in the parent structure, there is
no need for it at all in the `OnionPayload`. Sadly, for
serialization compatibility, we need it to continue to exist, at
least temporarily, but we can avoid populating the new fields in
that case.
...instead of accessing it via the `OnionPayload::Invoice` form.
This may be useful if we add MPP keysend support, but is directly
useful to allow us to drop `FinalOnionHopData` from `OnionPayload`.
The `full_stack_target` fuzzer managed to find a subtraction
underflow in the new `Channel::get_htlc_maximum` function where we
subtract both sides' reserve values from the channel funding. Such
a channel is obviously completely useless, so we should reject it
during opening instead of integer-underflowing later.
Thanks to Chaincode Labs for providing the fuzzing resources which
found this bug!
When we receive multiple HTLCs which claim to be a part of the same
MPP but which are inconsistent for some reason, we should fail the
inconsistent HTLCs but keep the first HTLCs up until the first
inconsistency.
This works, but it turns out there was no test coverage, so we add
some here.
The `chain::Listen` interface provides a block-connection-based
alternative to the `chain::Confirm` interface, which supports
providing transaction data at a time separate from the block
connection time.
For users who are downloading the full headers tree (e.g. from a
node over the Bitcoin P2P protocol) but who are not downloading
full blocks (e.g. because they're using BIP 157/158 filtering)
there is no API that matches exactly their event stream -
`chain::Listen` requries full blocks for each block,
`chain::Confirm` requires breaking each connection event into two
calls.
Given its incredibly trivial to take a `TransactionData` in
addition to a `Block` in `chain::Listen` we do so here, adding a
default-implementation `block_connected` which simply creates the
`TransactionData`, which ultimately all of the `chain::Listen`
implementations currently do anyway.
Closes#1128.
MAX_FUNDING_SATOSHIS will no longer be accurately named once wumbo is merged.
Also, we'll want to check that wumbo channels don't exceed the total bitcoin supply
`ChannelDetails::outbound_capacity_msat` describes the total amount
available for sending across several HTLCs, basically just our
balance minus the reserve value maintained by our counterparty.
However, when routing we use it to guess the maximum amount we can
send in a single additional HTLC, which it is not.
There are numerous reasons why our balance may not match the amount
we can send in a single HTLC, whether the HTLC in-flight limit, the
channe's HTLC maximum, or our feerate buffer.
This commit splits the `outbound_capacity_msat` field into two -
`outbound_capacity_msat` and `outbound_htlc_limit_msat`, setting us
up for correctly handling our next-HTLC-limit in the future.
This also addresses the first of the reasons why the values may
not match - the max-in-flight limit. The inaccuracy is ultimately
tracked as #1126.
Default to creating tlv onions for nodes for which we haven't received
any features through node announcements or which aren't in the
`network_graph`, and where no other features are known such as invoice
features nor features in the init msg for nodes we have channels to.
When we start getting a numerator and divisor particularly close to
each other, the log approximation starts to get very noisy. In
order to avoid applying scores that are basically noise (and can
range upwards of 2x the default per-hop penalty), simply consider
such cases as having a success probability of 100%.
When we send values over channels of rather substantial size, the
imprecision of our log lookup tables creates a rather substantial
non-linearity between values that round up or down one bit.
For example, with the default scoring values, sending 100k sats
over channels with 1m, 2m, 3m, and 4m sats of capacity score
rather drastically differently: 3645, 2512, 500, and 1442 msat.
Here we expand the precision of our log lookup tables rather
substantially by: (a) making the multiplier 2048 instead of 1024,
which still fits inside a u16, and (b) quadrupling the size of the
lookup table to look at the top 6 bits after the most-significant
bit of an input instead of the top 4.
This makes the scores of the same channels substantially more
linear, with values of 3613, 1977, 1474, and 1223 msat.
The same channels would be scored at 3611, 1972, 1464, and 1216
msat with a non-approximating scorer.
The cost of large payments tends to be dominated by the channel fees. To
avoid this, add an amount penalty to ProbabilisticScorer with a user
configurable multiplier. The multiplier is applied for every 2^20th of
the amount weighted by the negative log10 of the channel's success
probability for the payment.
In ProbabilisticScorer, the channel liquidity balance is reduced
whenever a payment fails at the corresponding channel. The payment may
still be retried through the channel, however, because the liquidity
penalty is capped. Use u64::max_value instead in this situation to avoid
retrying over the same path. This effectively makes u64::max_value the
penalty for amounts exceeding the upper bound, as well.
As an edge case, avoid using u64::max_value on attempts where the amount
is equal to the effective capacity, which may be the HTLC maximum when
the channel capacity is unknown.
During the first pass of path finding, we seek a single path with the
exact payment amount, and only seek additional paths if (a) no single
path can carry the entire balance of the payment or (b) we found a good
path, but along the way we found candidate paths with the potential to
result in a lower total fee. This commit fixes the behavior of (b) -- we
were previously considering some paths to be candidates for a lower fee
when in fact they never would have worked. This caused us to re-run
Dijkstra's when it might not have been beneficial.