The ChannelMonitor::get_claimable_balances method provides a more
straightforward approach to the balance of a channel, which satisfies
most use cases. The computation of AvailableBalances::balance_msat is
complex and originally had a different purpose that is not applicable
anymore.
To support route blinding, we want to split OnionHopData into two separate
structs, one for inbound onions and one for outbound onions. This is because
blinded payloads change the fields present in the onion hop data struct based
on whether we're sending vs receiving (outbound onions include encrypted blobs,
inbound onions can decrypt those blobs and contain the decrypted fields
themselves).
In upcoming commits, we'll add variants for blinded payloads to the new
InboundPayload enum.
Given we build `InFlightHtlcs` per route-fetch call, there's no
reason to pass them out by reference rather than simply giving the
user the full object. This also allows them to tweak the in-flight
set before fetching a route.
Now that we support channels with anchor outputs, we add a new
ConfirmationTarget variant that, for now, will only apply to such
channels. This new variant should target estimating the minimum feerate
required to be accepted into most node mempools across the network.
This commit makes use of the added enum to calculate the dust
exposure threshold based on the current fee rate. This also updates
tests to ensure it works as intended.
This ensures freshly initialized nodes can proceed to create unexpired
invoices without a call to `best_block_updated`, since an invoice's
expiration delta is applied to `highest_seen_timestamp`.
When generating onion message fuzz data, the same public key was used
for each node. However, the code now advances the blinded path if the
sender is the introduction node. Use different node secrets for each
node to avoid this. Note that the exercised handling code is for the
sender's immediate peer.
Add a trait for finding routes for onion messages and parameterize
OnionMessenger with it. This allows OnionMessenger to reply to messages
that it handles via one of its handlers (e.g., OffersMessageHandler).
Add a trait for handling BOLT 12 Offers messages to OnionMessenger and a
skeleton implementation of it for ChannelManager. This allows users to
either provide their own custom handling Offers messages or rely on a
version provided by LDK using stateless verification.
Now that the `get_available_balances` min/max bounds are exact, we
can stop doing all the explicit checks in `send_htlc` entirely,
instead comparing against the `get_available_balances` bounds and
failing if the amount is out of those bounds.
This breaks support for sending amounts below the dust limit if
there is some amount of dust exposure remaining before we hit our
cap, however we will no longer generate such routes anyway.
Now that the value available to send is expected to match the
success or failure of sending exactly, we should assert this in the
`chanmon_consistency` fuzzer.
In the next commit we'll actually rip the checks out of `send_htlc`
which will make this a somewhat less useful test, however fuzzing
on this specific commit can help to reveal bugs.
In the coming commits, in order to ensure all routes we generate
are usable, we'll start calculating the next-HTLC minimum for our
channels and using it in the router. Here we set this up by adding
an always-0 field for it in `ChannelDetails` and use it when
routing.
This was a fairly old introduction to the spec to allow nodes to indicate
to their peers what chains they are interested in (i.e. will open channels
and gossip for).
We don't do any of the handling of this message in this commit and leave
that to the very next commit, so the behaviour is effectively the same
(ignore networks preference).
This PR aims to create a "stateless" scorer. Instead of passing
in fee params at construction-time, we want to parametrize the
scorer with an associated "parameter" type, which is then
passed to the router function itself, and allows passing
different parameters per route-finding call.
Each message handler provides which features it supports. A custom
message handler may support unknown features. Therefore, these features
should be checked against instead of the features known by LDK.
Additionally, fail the connection if the peer requires features unknown
to the handler. The peer should already fail the connection in the
latter case.
`rust-bitcoin v0.30.0` introduces concrete variants for data members of
block `Header`s. To avoid having to update these across every use, we
introduce new helpers to create dummy blocks and headers, such that the
update process is a bit more straight-forward.
This is the first of a set of PRs to enable the experimental dual-funded
channels feature using interactive transaction construction. This allows
both the channel initiator and channel acceptor to contribute funds
towards the channel.
`PeerManager` takes a `MessageHandler` struct which contains all
the known message handlers for it to pass messages to. It then,
separately, takes a `CustomMessageHandler`. This makes no sense, we
should simply include the `CustomMessageHandler` in the
`MessageHandler` struct for consistency.
Previously, we were requiring any `UPDATE` onion errors to include
a `channel_update`, as the spec mandates[1]. If we see an onion
error which is missing one we treat it as a misbehaving node that
isn't behaving according to the spec and simply remove the node.
Sadly, it appears at least some versions of CLN are such nodes, and
opt to not include `channel_update` at all if they're returning a
`temporary_channel_failure`. This causes us to completely remove
CLN nodes from our graph after they fail to forward our HTLC.
While CLN is violating the spec here, there's not a lot of reason
to not allow it, so we go ahead and do so here, treating it simply
as any other failure by letting the scorer handle it.
[1] The spec says `Please note that the channel_update field is
mandatory in messages whose failure_code includes the UPDATE flag`
however doesn't repeat it in the requirements section so its not
crazy that someone missed it when implementing.
This allows the `InMemorySigner` to produce its own randomness, which we
plan to use when generating signatures in future work.
We can no longer derive `Clone` due to the `AtomicCounter`, so we opt to
implement it manually.