Our existing lockorder inversion checks look at specific instances
of mutexes rather than the general mutex itself. This changes that
behavior to look at the instruction pointer at which a mutex was
created and treat all mutexes which were created at the same
location as equivalent.
This allows us to detect lockorder inversions which occur across
tests, though it does substantially reduce parallelism during test
runs.
Because we handle messages (which can take some time, persisting
things to disk or validating cryptographic signatures) with the
top-level read lock, but require the top-level write lock to
connect new peers or handle disconnection, we are particularly
sensitive to writer starvation issues.
Rust's libstd RwLock does not provide any fairness guarantees,
using whatever the OS provides as-is. On Linux, pthreads defaults
to starving writers, which Rust's RwLock exposes to us (without
any configurability).
Here we work around that issue by blocking readers if there are
pending writers, optimizing for readable code over
perfectly-optimized blocking.