There is a possible race condition when both the latest block hash and
height are needed. Combine these in one struct and place them behind a
single lock.
Instead of relying on the user to ensure the funding transaction is
correct (and panicing when it is confirmed), we should check it is
correct when it is generated. By taking the full funding transaciton
from the user on generation, we can also handle broadcasting for
them instead of doing so via an event.
Sadly the connected-in-order tests have to be skipped in our normal
test suite as many tests violate it. Luckily we can still enforce
it in the tests which run in other crates.
Co-authored-by: Matt Corallo <git@bluematt.me>
Co-authored-by: Jeffrey Czyz <jkczyz@gmail.com>
We currently only use it to override the graph-specific features
returned in the route, though we should also use it to enable or
disable MPP.
Note that tests which relied on MPP behavior have had all of their
get_route calls upgraded to provide the MPP flag.
When ChannelMonitors are persisted, they need to store the most recent
block hash seen. However, for newly created channels the default block
hash is used. If persisted before a block is connected, the funding
output may be missed when syncing after a restart. Instead, initialize
ChannelManager with a "birthday" hash so it can be used later when
creating channels.
The `ChannelKeys` object really isn't about keys at all anymore,
its all about signing. At the same time, we rename the type aliases
used in traits from both `ChanKeySigner` and `Keys` to just
`Signer` (or, in contexts where Channel isnt clear, `ChanSigner`).
Instead of `key_derivation_params` being a rather strange type, we
call it `channel_keys_id` and give it a generic 32 byte array. This
should be much clearer for users and also more flexible.
ChannelManager::force_close_channel does not fail if a non-existing channel id is being passed, making it hard to catch from an API point of view.
Makes force_close_channel return in the same way close_channel does so the user calling the method with an unknown id can be warned.
This adds a new method to the general cross-channel `KeysInterface`
which requires it to handle the deserialization of per-channel
signer objects. This allows the deserialization of per-channel
signers to have more context available, which, in the case of the
C bindings, includes the actual KeysInterface information itself.
This changes adds the genesis block hash as a BlockHash to the
NetworkGraph struct. Making the NetworkGraph aware allows the message
handler to validate the chain_hash for received messages. This change
also adds the hash value to the Writeable and Readable methods.
- The ChainMonitor should:
Whenever a new channel is added or updated, these updates
should be conveyed to the persister and persisted to disk.
Even if the update errors while it's being applied, the
updated monitor still needs to be persisted.
Given the chain::Watch interface is defined in terms of ChannelMonitor
and ChannelMonitorUpdateErr, move channelmonitor.rs from the ln module
to the chain module.
WatchEventProvider served as a means for replacing ChainWatchInterface.
However, it requires users to explicitly fetch WatchEvents, even if not
interested in them. Replace WatchEventProvider by chain::Filter, which
is an optional member of ChainMonitor. If set, interesting transactions
and output spends are registered such that blocks containing them can be
retrieved from a chain source in an efficient manner.
This is useful when the chain source is not a full node. For Electrum,
it allows for pre-filtered blocks. For BIP157/158, it serves as a means
to match against compact filters.
BlockNotifier was removed in the previous commit, thus ChainListener is
no longer needed. Instead, anything needing chain events should be
notified directly.
ChainMonitor's template Key parameter was meant to allow supporting
both local monitoring, where Key=OutPoint, and watchtowers, where Key=
(PublicKey, u32). Use OutPoint directly since the watchtower case will
not be supported this way.
ManyChannelMonitor was renamed chain::Watch in the previous commit. Use
a more concise name for an implementation that monitors the chain for
channel activity. Future work will parameterize the struct to allow for
different varieties of persistence. Thus, users usually will be able to
use ChainMonitor directly rather than implementing a chain::Watch that
wraps it.
ChainWatchInterface was intended as an interface for watching rather
than accessing the chain. Remove get_chain_utxo and add chain::Access
trait for this behavior. Wrap it with an Option in NetGraphMsgHandler in
order to simplify the error interface.
Use of ChainWatchInterface was replaced with WatchEvent in the previous
commit. Remove it from the parameterization of SimpleManyChannelMonitor
since it is no longer needed.
ChainListeners should be independent of each other, but in practice this
is not the case because ChainWatchInterface introduces a dependency
between them. Push ChainWatchInterface down into the ChainListener
implementations where needed. Update ChainListener's block_connected
method to take a slice of the form &[(usize, &Transaction)] where each
transaction is paired with its position within the block.
Due to a desire to be able to override temporary channel IDs and
onion keys, KeysInterface had two separate fetch-random-32-bytes
interfaces - an onion-key specific version which fetched 2 random
32 byte strings and a temporary-channel-id specific version.
It turns out, we never actually need to override both at once (as
creating a new channel and sending an outbound payment are always
separate top-level calls), so there's no reason to add two
functions to the interface when both really do the same thing.
This changes the LICENSE file and adds license headers to most files
to relicense under dual Apache-2.0 and MIT. This is helpful in that
we retain the patent grant issued under Apache-2.0-licensed work,
avoiding some sticky patent issues, while still allowing users who
are more comfortable with the simpler MIT license to use that.
See https://github.com/rust-bitcoin/rust-lightning/issues/659 for
relicensing statements from code authors.
We use them largely as indexes into a Vec<Transaction> so there's
little reason for them to be u32s. Instead, use them as usize
everywhere.
We also take this opportunity to add range checks before
short_channel_id calculation, as we could otherwise end up with a
bogus short_channel_id due to an output index out of range.
This was just an oversight when route calculation was split up into
parts - it makes no sense for get_route to require that we have a
full route message handler, only a network graph (which can always
be accessed from a NetGraphMsgHandler anyway).
When we were sending an open_channel messages we were asking the
feerate estimator for a new value instead of using the one we had.
If the feerate estimator gave a different value than the one it did
when we created the Channel struct, we'd start out-of-sync with our
counterparty and blow up on funding_signed. Even worse, the
ConfirmationTarget used was different, so its highly likely they
would disagree.
Also remove newly unused fee estimator parameter from get_open-channel
API.
Co-authored-by: Matt Corallo <git@bluematt.me>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
A dynamic-p2wsh-output like `to_local` on local commitment/HTLC txn
require a signature from delayed_payment_key to be spend. Instead of
sending private key in descriptor, we ask for spender to derive again
the corresponding ChannelKeys based on key state, uniquely identifying
a channel and encompassing its unique start data.
Descriptor modification is done in next commit.
We also update to use single idents when referencing the Deref=*
types since the automated code generator is pretty braindead.
This also moves some test utils out of peer_handler.rs and into
util::test_utils to standardize things a little bit, which we need
to concretize the PeerHandler types used in testing.
This makes it easier for our automated bindings generator to
function as it tries to automatically create a ::new if the struct
contains only pub elements who's type is convertible.
This caused a bunch of cascading changes, including
passing loggers down to Channels in function calls
rather than having each Channel have a pointer to the
ChannelManager's Logger (which was a circular reference).
Other structs that the Channel had passed its Logger to also
had their loggers removed. Other newly unused Loggers were
also removed, especially when keeping them would've caused
a bunch of extra test changes to be necessary, e.g. with
the ChainWatchInterfaceUtil's Logger.
This simplifies channelmonitor quite nicely (as expected) as we
never have to be concerned with learning data in a DataLossProtect
which is require for us to claim our funds from the latest remote
commitment transaction.