This will allow us to block `ChannelMonitorUpdate`s on `Event`
processing in the next commit.
Note that this gets dangerously close to breaking forwards
compatibility - if we have an `Event` with an
`EventCompletionAction` tied to it, we persist a new, even, TLV in
the `ChannelManager`. Hopefully this should be uncommon, as it
implies an `Event` was delayed until after a full round-trip to a
peer.
In the coming commits, we need to delay `ChannelMonitorUpdate`s
until future actions (specifically `Event` handling). However,
because we should only notify users once of a given
`ChannelMonitorUpdate` and they must be provided in-order, we need
to track which ones have or have not been given to users and, once
updating resumes, fly the ones that haven't already made it to
users.
To do this we simply add a `bool` in the `ChannelMonitorUpdate` set
stored in the `Channel` which indicates if an update flew and
decline to provide new updates back to the `ChannelManager` if any
updates have their flown bit unset.
Further, because we'll now by releasing `ChannelMonitorUpdate`s
which were already stored in the pending list, we now need to
support getting a `Completed` result for a monitor which isn't the
only pending monitor (or even out of order), thus we also rewrite
the way monitor updates are marked completed.
While these transactions were still valid, we incorrectly assumed that
they would propagate with a locktime of `current_height + 1`, when in
reality, only those with a locktime strictly lower than the next height
in the chain are allowed to enter the mempool.
In a future commit, we plan to correctly enforce that the spending
transaction has a valid locktime relative to the chain for the node
broascasting it in `TestBroadcaster::broadcast_transaction` to. We catch
up these test node instances to their expected height, such that we do
not fail said enforcement.
Unfortunately, the RAII types used by `RwLock` are not `Send`, which is
why they can't be held over `await` boundaries. In order to allow
asynchronous events processing in multi-threaded environments, we here
allow to process events without holding the `total_consistency_lock`.
This finally completes the piping of the `payment_metadata` from
from the BOLT11 invoice on the sending side all the way through the
onion sending + receiving ends to the user on the receive events.
When we receive an HTLC, we want to pass the `payment_metadata`
through to the `PaymentClaimable` event. This does most of the
internal refactoring required to do so - storing a
`RecipientOnionFields` in the inbound HTLC tracking structs,
including the `payment_metadata`.
In the future this struct will allow us to do MPP keysend receipts
(as it now stores an Optional `payment_secret` for all inbound
payments) as well as custom TLV receipts (as the struct is
extensible to store additional fields and the internal API supports
filtering for fields which are consistent across HTLCs).
If we receive an HTLC and are processing it a potential MPP part,
we always continue in the per-HTLC loop if we call the `fail_htlc`
macro, thus its nice to actually do the `continue` therein rather
than at the callsites.
If we add an entry to `claimable_payments` we have to ensure we
actually accept the HTLC we're considering, otherwise we'll end up
with an empty `claimable_payments` entry.
This adds the new `payment_metadata` to `RecipientOnionFields`,
passing the metadata from BOLT11 invoices through the send pipeline
and finally copying them info the onion when sending HTLCs.
This completes send-side support for the new payment metadata
feature.
We correctly send out a gossip channel disable update after one
full time tick being down (1-2 minutes). This is pretty nice in
that it avoids nodes trying to route through our nodes too often
if they're down. Other nodes have a much longer time window,
causing them to have much less aggressive channel disables. Sadly,
at one minute it's not super uncommon for tor nodes to get disabled
(once a day or so on two nodes I looked at), and this causes the
lightning terminal scorer to consider the LDK node unstable (even
though it's the one doing the disabling - so is online). This
causes user frustration and makes LDK look bad (even though it's
probably failing fewer payments).
Given this, and future switches to block-based `channel_update`
timestamp fields, it makes sense to go ahead and switch to delaying
channel disable announcements for 10 minutes. This puts us more in
line with other implementations and reduces gossip spam, at the
cost of less reliable payments.
Fixes#2175, at least the currently visible parts.
When generating a `channel_update` either in response to a fee
configuration change or an HTLC failure, we currently poll the
channel to check if the peer's connected when setting the disabled
bit in the `channel_update`. This could cause cases where we set
the disable bit even though the peer *just* disconnected, and don't
generate a followup broadcast `channel_update` with the disabled
bit unset.
While a node generally shouldn't rebroadcast a `channel_update` it
received in an onion, there's nothing inherently stopping them from
doing so. Obviously in the fee-update case we expect the message to
propagate.
Luckily, since we already "stage" disable-changed updates, we can
check the staged state and use that to set the disabled bit in all
`channel_update` cases.
In our test utilities, we generally refer to a `Node` struct which
holds a `ChannelManager` and a number of other structs. However, we
use the same utilities in benchmarking, where we have a different
`Node`-like struct. This made moving from macros to functions
entirely impossible, as we end up needing multiple types in a given
context.
Thus, here, we take the pain and introduce some wrapper traits
which encapsulte what we need from `Node`, swapping some of our
macros to functions.
In 6090d9e6a8 we swapped out old
debug assertions that checked that a lock was `try_lock`able to
test that certain locks weren't held when we needed to be able to
take them in some near branch. However, another slipped in after in
the `ChannelMonitorUpdate` handling rework, which is replaced with
the new debug assertions here.
Now that we guarantee `claim_payment` will always succeed we have
to let the user know what the deadline is. We still fail payments
if they haven't been claimed in time, which we now expose in
`PaymentClaimable`.
There's no reason to hold a lock on `per_peer_state` while we're
claiming from a since-closed channel via a `ChannelMonitorUpdate`,
which we stop doing here.
`handle_error` must be called without `per_peer_state` mutex or
`pending_events` mutex locks held or we may risk deadlocks.
Previously we checked this in debug builds in the error path, but
not in the success path.
As it turns out, `funding_transaction_generated`'s error path does
hold a `per_peer_state` lock, which we fix here as well as move the
tests to happen unconditionally.
This passes the new `RecipientOnionFields` through the internal
sending APIs, ensuring we have access to the full struct when we
go to construct the sending onion so that we can include any new
fields added there.
While most lightning nodes don't (currently) support providing a
payment secret or payment metadata for spontaneous payments,
there's no specific technical reason why we shouldn't support
sending those fields to a recipient.
Further, when we eventually move to allowing custom TLV entries in
the recipient's onion TLV stream, we'll want to support it for
spontaneous payments as well.
Here we simply add the new `RecipientOnionFields` struct as an
argument to the spontaneous payment send methods. We don't yet
plumb it through the payment sending logic, which will come when we
plumb the new struct through the sending logic to replace the
existing payment secret arguments.
This moves the public payment sending API from passing an explicit
`PaymentSecret` to a new `RecipientOnionFields` struct (which
currently only contains the `PaymentSecret`). This gives us
substantial additional flexibility as we look at add both
`PaymentMetadata`, a new (well, year-or-two-old) BOLT11 invoice
extension to provide additional data sent to the recipient.
In the future, we should also add the ability to add custom TLV
entries in the `RecipientOnionFields` struct.
Many of the fields in `HTLCSource::OutboundRoute` are used to
rebuild the pending-outbound-payment map on reload if the
`ChannelManager` was not serialized though `ChannelMonitor`(s)
were after an HTLC was sent. As of 0.0.114, however, such payments
are not retryable without allowing them to fail and doing a full,
fresh, send.
Thus, some of the fields can be safely removed - we only really
care about having enough information to provide the user a failure
event, not being able to retry.
Here we drop one such field - the `payment_secret`, making our
`ChannelMonitorUpdate`s another handful of bytes smaller.
Previously, LDK would refuse to claim a payment if a channel on
which the payment was received had been closed between when the
HTLC was received and when we went to claim it. This makes sense in
the payment case - why pay an on-chain fee to claim the HTLC when
presumably the sender may retry later. Long ago it also reduced
total code in the claim pipeline.
However, this doesn't make sense if you're trying to do an atomic
swap or some other protocol that requires atomicity with some other
action - if your money got claimed elsewhere you need to be able to
claim the HTLC in lightning no matter what. Further, this is an
over-optimization - there should be a very, very low likelihood
that a channel closes between when we receive the last HTLC for a
payment and the user goes to claim the payment. Since we now have
code to handle this anyway we should allow it.
Fixes#2017.
Currently, users don't have good way of being notified when channel open
negotiations have succeeded and new channels are pending confirmation on
chain. To this end, we add a new `ChannelPending` event that is emitted
when send or receive a `funding_signed` message, i.e., at the last
moment before waiting for the confirmation period.
We track whether the event had previously been emitted in `Channel` and
remove it from `internal_funding_created` entirely. Hence, we now
only emit the event after ChannelMonitorUpdate completion, or upon
channel reestablish. This mitigates a race condition where where we
wouldn't persist the event *and* wouldn't regenerate it on restart,
therefore potentially losing it, if async CMU wouldn't complete before
ChannelManager persistence.
In `no-std`, we exposed `wait` functions which rely on a dummy
`Condvar` which never actually sleeps. This is somwhat nonsensical,
not to mention confusing to users. Instead, we simply remove the
`wait` methods in `no-std` builds.
Rather than having three ways to await a `ChannelManager` being
persistable, this moves to just exposing the awaitable `Future` and
having sleep functions on that.