ChannelManager::force_close_channel does not fail if a non-existing channel id is being passed, making it hard to catch from an API point of view.
Makes force_close_channel return in the same way close_channel does so the user calling the method with an unknown id can be warned.
This drops any direct calls to a generic `ChannelKeys::read()` and
replaces it with the new `KeysInterface::read_chan_signer()`. Still,
under the hood all of our own `KeysInterface::read_chan_signer()`
implementations simply call out to a `Readable::read()` implemention.
It doesn't make sense to ever build a lightning node which doesn't
ever write ChannelMonitors to disk, so having a ChannelKeys object
which doesn't implement Writeable is nonsense.
Here we require Writeable for all ChannelKeys objects, simplifying
code generation for C bindings somewhat.
This change enables initiating gossip queries with a peer using the
SendMessageEvent enum. Specifically we add an event for sending
query_channel_range to discover the existance of channels and an event
for sending query_short_channel_ids to request routing gossip messages
for a set of channels. These events are handled inside the process_events
method of PeerManager which sends the serialized message to the peer.
The full_stack_target managed to find a bug where, if we receive
a funding_created message which has a channel_id identical to an
existing channel, we'll end up
(a) having the monitor update for the new channel fail (due to
duplicate outpoint),
(b) creating a monitor update for the new channel as we
force-close it,
(c) panicing due to the force-close monitor update is applied to
the original channel and is considered out-of-order.
Obviously we shouldn't be creating a force-close monitor update for
a channel which can never appear on chain, so we do that here and
add a test which previously failed and checks a few
duplicate-channel-id cases.
If the channel is hitting the chain right as we receive a preimage,
previous to this commit the relevant ChannelMonitor would never
learn of this preimage.
In review of the final doc changes in #649, I noticed there
appeared to be redundant monitored-outpoints function in
`ChannelMonitor` - `get_monitored_outpoints()` and
`get_outputs_to_watch()`.
In 6f08779b04,
get_monitored_outpoints() was added, with its behavior largely the
same as today's - only returning the set of remote commitment txn
outputs that we've learned about on-chain. This is clearly not
sufficient, and in 73dce207dd,
`get_outputs_to_watch` was added which was overly cautious to
ensure nothing was missed. Still, the author of 73dce207dd
(me) seemed entirely unaware of the work in 6f08779b04
(also me), despite the function being the literal next function in
the same file. This is presumably because it was assumed that
`get_monitored_outpoints` referred to oupoints for which we should
monitor for spends of (which is true), while `get_outputs_to_watch`
referred to outpouts which we should monitor for the transaction
containing said output (which is not true), or something of that
nature. Specifically, it is the expected behavior that the only
time we care about `Filter::register_tx` is for the funding
transaction (which we aren't aware of the inputs of), but for all
other transactions we register interest on the basis of an outpoint
in the previous transaction (ie via `Filter::register_output`).
Here we drop the broken-on-day-one `get_monitored_outpoints()`
version, but assert in testing that the values which it would return
are all present in `get_outputs_to_watch()`.
It was noticed (via clippy) by @casey that we were taking and then
immediately dropping the total_consistency_lock because `let _ =`
doesn't actually bind the response to anything. This appears to be
a consequence of wanting `if let Some(_) =` to not hold a ref to
the contained value at all, but is relatively surprising to me.
Given the chain::Watch interface is defined in terms of ChannelMonitor
and ChannelMonitorUpdateErr, move channelmonitor.rs from the ln module
to the chain module.
Transaction data from a block may be filtered before it is passed to
block_connected functions, which may need the index of each transaction
within the block. Rather than define each function in terms of a slice
of tuples, define a type alias for the slice where it can be documented.
BlockNotifier was removed in the previous commit, thus ChainListener is
no longer needed. Instead, anything needing chain events should be
notified directly.
BlockNotifier is a convenience for handing blocks to listeners. However,
it requires that each listener conforms to the ChainListener interface.
Additionally, there are only two listeners, ChannelManager and
ChainMonitor, the latter of which may not be used when monitoring
channels remotely. Remove BlockNotifier since it doesn't provide much
value and constrains each listener to a specific interface.
Rename ManyChannelMonitor to chain::Watch and move to chain/mod.rs,
where chain-related interfaces live. Update the documentation for
clarity and to conform to rustdoc formatting.
ChainListeners should be independent of each other, but in practice this
is not the case because ChainWatchInterface introduces a dependency
between them. Push ChainWatchInterface down into the ChainListener
implementations where needed. Update ChainListener's block_connected
method to take a slice of the form &[(usize, &Transaction)] where each
transaction is paired with its position within the block.
* Channel::get_counterparty_htlc_minimum_msat() returned
holder_htlc_minimum_msat, which was obviously incorrect.
* ChannelManager::get_channel_update set htlc_minimum_msat to
Channel::get_holder_htlc_minimum_msat(), but the spec explicitly
states we "MUST set htlc_minimum_msat to the minimum HTLC value
(in millisatoshi) that the channel peer will accept." This makes
sense because the reason we're rejecting the HTLC is because our
counterparty's HTLC minimum value is too small for us to send to
them, our own HTLC minimum value plays no role. Further, our
router already expects this - looking at the same directional
channel info as it does fees.
Finally, we add a test in the existing onion router test cases
which fails if either of the above is incorrect (the second issue
discovered in the process of writing the test).
Previously most of variable fields relative to data belonging to
our node or counterparty were labeled "local"/"remote". It has been
deemed confusing with regards to transaction construction which is
always done from a "local" viewpoint, even if owner is our counterparty
Its somewhat awkward that ChannelManagerReadArgs requires a mutable
reference to a HashMap of ChannelMonitors, forcing the callsite to
define a scope for the HashMap which they almost certainly won't use
after deserializing the ChannelManager. Worse, to map the current
version to C bindings, we'd need to also create a HashMap binding,
which is overkill for just this one use.
Instead, we just give the ReadArgs struct ownership of the HashMap
and add a constructor which fills the HashMap for you.
To do this, we replace get_and_clear_pending_htlcs_updated with
get_and_clear_pending_monitor_events, and which still transmits HTLCUpdates
as before, but now also transmits a new MonitorEvent::CommitmentTxBroadcasted
event when a channel's commitment transaction is broadcasted.
Due to a desire to be able to override temporary channel IDs and
onion keys, KeysInterface had two separate fetch-random-32-bytes
interfaces - an onion-key specific version which fetched 2 random
32 byte strings and a temporary-channel-id specific version.
It turns out, we never actually need to override both at once (as
creating a new channel and sending an outbound payment are always
separate top-level calls), so there's no reason to add two
functions to the interface when both really do the same thing.
This changes the LICENSE file and adds license headers to most files
to relicense under dual Apache-2.0 and MIT. This is helpful in that
we retain the patent grant issued under Apache-2.0-licensed work,
avoiding some sticky patent issues, while still allowing users who
are more comfortable with the simpler MIT license to use that.
See https://github.com/rust-bitcoin/rust-lightning/issues/659 for
relicensing statements from code authors.
For making debugging easy.
If the user gives a different node_secret for transport
layer (`PeerManager`) and for routing msg, internal_announcement_signatures
is the first place it causes an error.
By giving a detailed error message, user will be able to
fix the bug quickly.
... for ChannelError and APIMisuseError
Before this commit, When rl returns error, we don't know
The actual parameter which caused the error.
By returning parameterised `String` instead of predefined `&'static str`,
We can give a caller improved error message.
TestLogger now has two additional methods
1. `assert_log_contains` which checks the logged messsage
has how many entry which includes the specified string as a substring.
2. `aasert_log_regex` mostly the same with `assert_log_contains`
but it is more flexible that caller specifies regex which has
to be satisfied instead of just a substring.
For regex, tests now includes `regex` as dev-dependency.
We use them largely as indexes into a Vec<Transaction> so there's
little reason for them to be u32s. Instead, use them as usize
everywhere.
We also take this opportunity to add range checks before
short_channel_id calculation, as we could otherwise end up with a
bogus short_channel_id due to an output index out of range.
... instead of only the txid.
This is another instance of it not being possible to fully
re-implement SimpleManyChannelMonitor using only public methods. In
this case you couldn't properly register outpoints for monitoring
so that the funding transaction would be matched.
When we were sending an open_channel messages we were asking the
feerate estimator for a new value instead of using the one we had.
If the feerate estimator gave a different value than the one it did
when we created the Channel struct, we'd start out-of-sync with our
counterparty and blow up on funding_signed. Even worse, the
ConfirmationTarget used was different, so its highly likely they
would disagree.
Also remove newly unused fee estimator parameter from get_open-channel
API.
Co-authored-by: Matt Corallo <git@bluematt.me>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
This also includes adding a closure that creates a new pending HTLC status
as a parameter for Channel's update_add_htlc. This will later be useful
when we add the check for fee spike buffer violations, which will also result
in changing an HTLC's pending status to failing.
Co-authored-by: Jeffrey Czyz <jkczyz@gmail.com>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
Instead of using a raw generic type, an associted type allows us
to have explicit docs on the type, which is nice. More importantly,
however, our automated bindings generator knows how to read
associated types but not raw generics.
Also, our bindings generator expects things which are referenced to
have already been defined, so we move ManyChannelMonitor below the
ChannelMonitor definition.
This caused a bunch of cascading changes, including
passing loggers down to Channels in function calls
rather than having each Channel have a pointer to the
ChannelManager's Logger (which was a circular reference).
Other structs that the Channel had passed its Logger to also
had their loggers removed. Other newly unused Loggers were
also removed, especially when keeping them would've caused
a bunch of extra test changes to be necessary, e.g. with
the ChainWatchInterfaceUtil's Logger.