While removing the `balance_msat` field absolutely makes sense -
it is, at best, confusing - we really need a solid replacement for
it before we can do so. While one such replacement is in progress,
it is not complete and we'd like to not block our current release
on its completion.
This reverts commit ef5be580f5.
Assuming our keys haven't been compromised, and that random transactions
aren't learning of these scripts somehow and sending funds to them, it
was only possible for one spendable output to exist within a
transaction.
- `shutdown_script` can only exist in co-op close transactions.
- `counterparty_payment_script` can only exist in counterparty
commitment transactions.
- `broadcasted_holder_revokable_script` can only exist in holder
commitment/HTLC transactions.
- `destination_script` can exist in any other type of claim we support.
Now that we're exposing this API to users such that they can rescan any
relevant transactions, there's no harm in allowing them to claim more
funds from spendable outputs than we expected.
Currently, our API will only expose `SpendableOutputDescriptor`s once
after they are no longer under reorg risk (see `ANTI_REORG_DELAY`).
Users have often requested they'd like the ability to retrieve these in
some other way, either for historical purposes, or to handle replaying
any in the event of a failure.
HTLC outputs, like the `to_remote` output, in commitment transactions
with anchor outputs also have an additional `1 CSV` constraint on the
counterparty. When spending such outputs, their corresponding input
needs to have their sequence set to 1. This was done for HTLC claims
from holder commitments, but unfortunately not for counterparty
commitments as we were lacking test coverage.
While there is no great way to handle a true failure to persist a
`ChannelMonitorUpdate`, it is confusing for users for there to be
no error variant at all on an I/O operation.
Thus, here we re-add the error variant removed over the past
handful of commits, but rather than handle it in a truly unsafe
way, we simply panic, optimizing for maximum mutex poisoning to
ensure any future operations fail and return immediately.
In the future, we may consider changing the handling of this to
instead set some "disconnect all peers and fail all operations"
bool to give the user a better chance to shutdown in a semi-orderly
fashion, but there's only so much that can be done in lightning if
we truly cannot persist new updates.
In general, doc comments on trait impl blocks are not very visible
in rustdoc output, and unless they provide useful information they
should be elided.
Here we drop useless doc comments on `ChainMonitor`'s `Watch` impl
methods.
Since we now (almost) support async monitor update persistence, the
documentation on `ChannelMonitorUpdateStatus` can be updated to no
longer suggest users must keep a local copy that persists before
returning. However, because there are still a few remaining issues,
we note that async support is currently beta and explicily warn of
potential for funds-loss.
Fixes#1684
The `MonitorEvent::CommitmentTxConfirmed` has always been a result
of us force-closing the channel, not the counterparty doing so.
Thus, it was always a bit of a misnomer. Worse, it carried over
into the channel's `ClosureReason` in the event API.
Here we simply rename it and use the proper `ClosureReason`.
When a `ChannelMonitorUpdate` fails to apply, it generally means
we cannot reach our storage backend. This, in general, is a
critical issue, but is often only a transient issue.
Sadly, users see the failure variant and return it on any I/O
error, resulting in channel force-closures due to transient issues.
Users don't generally expect force-closes in most cases, and
luckily with async `ChannelMonitorUpdate`s supported we don't take
any risk by "delaying" the `ChannelMonitorUpdate` indefinitely.
Thus, here we drop the `PermanentFailure` variant entirely, making
all failures instead be "the update is in progress, but won't ever
complete", which is equivalent if we do not close the channel
automatically.
Since we don't know the total input amount of an external claim (those
which come anchor channels), we can't limit our feerate bumps by the
amount of funds we have available to use. Instead, we choose to limit it
by a margin of the new feerate estimate.
Our `Trusted*` wrappers in `chan_utils` expose additional inner
fields by reference. However, because they were not explicitly
marked as returning a reference with the wrapped struct's
lifetimes, rustc was considering them to return a reference with
the wrapper struct's lifetime.
This is unnecessarily restrictive, and resulted in the addition of
a clone in 9850c5814a which we remove
here.
Because some of these tests require connecting blocks without
calling `get_and_clear_pending_msg_events`, we need to split up
the block connection utilities to only optionally call
sanity-checks.
Previously, updating block data on a chain monitor
would acquire a write lock on all of its associated
channel monitors and not release it until the loop
completed.
Now, we instead acquire it on each iteration,
fixing #2470.
Upon creating a channel monitor, it is provided with the initial
counterparty commitment transaction info directly before the very first
time it is persisted. Because of this, the very first counterparty
commitment is not seen as an update in the persistence pipeline, and so
our previous changes to the monitor and updates cannot be used to
reconstruct this commitment.
To be able to expose the counterparty's transaction for the very first
commitment, we add a thin wrapper around
`provide_latest_counterparty_commitment_tx`, that stores the necessary
data needed to reconstruct the initial commitment transaction in the
monitor.
This adds the feerate and local and remote output values to this channel
monitor update step so that a monitor can reconstruct the counterparty's
commitment transaction from an update. These commitment transactions
will be exposed to users in the following commits to support third-party
watchtowers in the persistence pipeline.
With only the HTLC outputs currently available in the monitor update, we
can tell how much of the channel balance is in-flight and towards which
side, however it doesn't tell us the amount that resides on either side.
Because of dust, we can't reliably derive the remote value from the
local value and visa versa. Thus, it seems these are the minimum fields
that need to be added.
This will make it possible to
link between SpendableOuts and ChannelMonitor
- change channel_id to option so we dont break upgrade
- remove unused channel_id
- document channel_id
- extract channel id dynamically to pass test
- use contains to check channel_id in test as the events are not ordered
- update docs framing
- specify ldk version channel_id will be introduced in
Co-authored-by: Elias Rohrer <dev@tnull.de>
Update lightning/src/events/mod.rs
Co-authored-by: Elias Rohrer <dev@tnull.de>
In 0ad1f4c943 we fixed a nasty bug
where a failure to persist a `ChannelManager` faster than a
`ChannelMonitor` could result in the loss of a `PaymentSent` event,
eventually resulting in a `PaymentFailed` instead!
As noted in that commit, there's still some risk, though its been
substantially reduced - if we receive an `update_fulfill_htlc`
message for an outbound payment, and persist the initial removal
`ChannelMonitorUpdate`, then respond with our own
`commitment_signed` + `revoke_and_ack`, followed by receiving our
peer's final `revoke_and_ack`, and then persist the
`ChannelMonitorUpdate` generated from that, all prior to completing
a `ChannelManager` persistence, we'll still forget the HTLC and
eventually trigger a `PaymentFailed` rather than the correct
`PaymentSent`.
Here we fully fix the issue by delaying the final
`ChannelMonitorUpdate` persistence until the `PaymentSent` event
has been processed and document the fact that a spurious
`PaymentFailed` event can still be generated for a sent payment.
The original fix in 0ad1f4c943 is
still incredibly useful here, allowing us to avoid blocking the
first `ChannelMonitorUpdate` until the event processing completes,
as this would cause us to add event-processing delay in our general
commitment update latency. Instead, we ultimately race the user
handling the `PaymentSent` event with how long it takes our
`revoke_and_ack` + `commitment_signed` to make it to our
counterparty and receive the response `revoke_and_ack`. This should
give the user plenty of time to handle the event before we need to
make progress.
Sadly, because we change our `ChannelMonitorUpdate` semantics, this
change requires a number of test changes, avoiding checking for a
post-RAA `ChannelMonitorUpdate` until after we process a
`PaymentSent` event. Note that this does not apply to payments we
learned the preimage for on-chain - ensuring `PaymentSent` events
from such resolutions will be addressed in a future PR. Thus, tests
which resolve payments on-chain switch to a direct call to the
`expect_payment_sent` function with the claim-expected flag unset.
The ChannelMonitor::get_claimable_balances method provides a more
straightforward approach to the balance of a channel, which satisfies
most use cases. The computation of AvailableBalances::balance_msat is
complex and originally had a different purpose that is not applicable
anymore.
In Java/TypeScript, we map enums as a base class and each variant
as a class which extends the base. In Java/TypeScript, functions
and fields share the same namespace, which means we cannot have
functions on an enum which have the same name as any fields in any
enum variants.
`Balance`'s `claimable_amount_satoshis` method aliases with fields
in each variant, and thus ultimately doesn't compile in TypeScript.
Because `Balance::claimable_amount_satoshis` has the same name as
the fields, it's also a bit confusing, as it doesn't return the
field for each variant, but sometimes returns zero if we're not
sure we can claim the balance.
Instead, we rename the fields in each enum variant to simply
`amount_satoshis`, to avoid implying that we can definitely claim
the balance.
This gives people more freedom with the channel monitors. For Mutiny
this would be nice for us to be able to create copies of them and pass
aorund in memory without having to serialize until we actually want to.
Originally by benthecarman <benthecarman@live.com>
Small bugfix from Matt Corallo <git@bluematt.me>
Now that we support channels with anchor outputs, we add a new
ConfirmationTarget variant that, for now, will only apply to such
channels. This new variant should target estimating the minimum feerate
required to be accepted into most node mempools across the network.
There's no need to yield such an event when the commitment transaction
already meets the target feerate on its own, so we can simply broadcast
it without an anchor child transaction. This may be a common occurrence
until we are less aggressive about feerate updates.