This was a fairly old introduction to the spec to allow nodes to indicate
to their peers what chains they are interested in (i.e. will open channels
and gossip for).
We don't do any of the handling of this message in this commit and leave
that to the very next commit, so the behaviour is effectively the same
(ignore networks preference).
When we generated a `ChannelMonitorUpdate` during `ChannelManager`
deserialization, we must ensure that it gets processed before any
other `ChannelMonitorUpdate`s. The obvious hook for this is when
taking the `total_consistency_lock`, which makes it unlikely we'll
regress by forgetting this.
Here we add that call in the `PersistenceNotifierGuard`, with a
test-only atomic bool to test that this criteria is met.
`rust-bitcoin v0.30.0` introduces concrete variants for data members of
block `Header`s. To avoid having to update these across every use, we
introduce new helpers to create dummy blocks and headers, such that the
update process is a bit more straight-forward.
While these transactions were still valid, we incorrectly assumed that
they would propagate with a locktime of `current_height + 1`, when in
reality, only those with a locktime strictly lower than the next height
in the chain are allowed to enter the mempool.
Untractable packages are those which cannot have their fees updated once
signed, hence why they weren't retried. There's no harm in retrying
these packages by simply re-broadcasting them though, as the fee market
could have spontaneously spiked when we first broadcast it, leading to
our transaction not propagating throughout node mempools unless
broadcast manually.
This is largely motivated by some follow-up work for anchors that will
introduce an event handler for `BumpTransaction` events, which we can
now include in this new top-level `events` module.
This results in a new, potentially redundant, `ChannelMonitorUpdate`
that must be applied to `ChannelMonitor`s to broadcast the holder's
latest commitment transaction.
This is a behavior change for anchor channels since their commitments
may require additional fees to be attached through a child anchor
transaction. Recall that anchor transactions are only generated by the
event consumer after processing a `BumpTransactionEvent::ChannelClose`
event, which is yielded after applying a
`ChannelMonitorUpdateStep::ChannelForceClosed` monitor update. Assuming
the node operator is not watching the mempool to generate these anchor
transactions without LDK, an anchor channel which we had to fail when
deserializing our `ChannelManager` would have its commitment transaction
broadcast by itself, potentially exposing the node operator to loss of
funds if the commitment transaction's fee is not enough to be accepted
into the network's mempools.
This is purely a refactor that does not change the InitFeatures
advertised by a ChannelManager. This allows users to configure which
features should be advertised based on the values of `UserConfig`. While
there aren't any existing features currently leveraging this behavior,
it will be used by the upcoming anchors_zero_fee_htlc_tx feature.
The UserConfig dependency on provided_init_features caused most
callsites of the main test methods responsible for opening channels to
be updated. This commit foregos that completely by no longer requiring
the InitFeatures of each side to be provided to these methods. The
methods already require a reference to each node's ChannelManager to
open the channel, so we use that same reference to obtain their
InitFeatures. A way to override such features was required for some
tests, so a new `override_init_features` config option now exists on
the test harness.
This change follows the rationale of commit 62236c7 and addresses the
last remaining redundant local commitment broadcast.
There's no need to broadcast our local commitment transaction if we've
already seen a confirmed one as it'll be immediately rejected as a
duplicate/conflict.
This will also help prevent dispatching spurious events for bumping
commitment and HTLC transactions through anchor outputs since the
dispatch for said events follows the same flow as our usual commitment
broadcast.
Previously, `Confirm::get_relevant_txids()` only returned a list of
transactions that have to be monitored for reorganization out of the
chain. This interface however required double bookkeeping: while we
internally keep track of the best block, height, etc, it would also
require the user to keep track which transaction was previously
confirmed in which block and to take actions based on any change, e.g,
to reconfirm them when the block would be reorged-out and the
transactions had been reconfirmed in another block.
Here, we track the confirmation block hash internally and return it via
`Confirm::get_relevant_txids()` to the user, which alleviates the
requirement for double bookkeeping: the user can now simply check
whether the given transaction is still confirmed and in the given block,
and take action if not.
We also split `update_claims_view`: Previously it was one, now it's two
methods: `update_claims_view_from_matched_txn` and
`update_claims_view_from_requests`.
When a `chain::Watch` `ChannelMonitor` update method is called, the
user has three options:
(a) persist the monitor update immediately and return success,
(b) fail to persist the monitor update immediately and return
failure,
(c) return a flag indicating the monitor update is in progress and
will complete in the future.
(c) is rather harmless, and in some deployments should be expected
to be the return value for all monitor update calls, but currently
requires returning `Err(ChannelMonitorUpdateErr::TemporaryFailure)`
which isn't very descriptive and sounds scarier than it is.
Instead, here, we change the return type used to be a single enum
(rather than a Result) and rename `TemporaryFailure`
`UpdateInProgress`.
When our counterparty is the payment destination and we receive
an `HTLCFailReason::Reason` in `fail_htlc_backwards_internal` we
currently always set `rejected_by_dest` in the `PaymentPathFailed`
event, implying the HTLC should *not* be retried.
There are a number of cases where we use `HTLCFailReason::Reason`,
but most should reasonably be treated as retryable even if our
counterparty was the destination (i.e. `!rejected_by_dest`):
* If an HTLC times out on-chain, this doesn't imply that the
payment is no longer retryable, though the peer may well be
offline so retrying may not be very useful,
* If a commitment transaction "containing" a dust HTLC is
confirmed on-chain, this definitely does not imply the payment
is no longer retryable
* If the channel we intended to relay over was closed (or
force-closed) we should retry over another path,
* If the channel we intended to relay over did not have enough
capacity we should retry over another path,
* If we received a update_fail_malformed_htlc message from our
peer, we likely should *not* retry, however this should be
exceedingly rare, and appears to nearly never appear in practice
Thus, this commit simply disables the behavior here, opting to
treat all `HTLCFailReason::Reason` errors as retryable.
Note that prior to 93e645daf4 this
change would not have made sense as it would have resulted in us
retrying the payment over the same channel in some cases, however
we now "blame" our own channel and will avoid it when routing for
the same payment.
The test intended to disconnect a transaction previously connected
but didn't disconnect enough blocks to do so, leading to it
confirming two conflicting transactions.
In the next few commits this will become an assertion failure.
In the next commit we add lockorder testing based on the line each
mutex was created on rather than the particular mutex instance.
This causes some additional test failure because of lockorder
inversions for the same mutex across different tests, which is
fixed here.
As the map values are no longer only `channel_id`s, but also a
`counterparty_node_id`s, the map is renamed to better correspond to
whats actually stored in the map.
Previously, while processing a confirmed revoked counterparty
commitment transaction, we'd populate `OnchainEvent`s for live
HTLCs with a `txid` source of the txid of the latest counterparty
commitment transactions, not the confirmed revoked one. This meant
that, if the user is using `transaction_unconfirmed` to notify us
of reorg information, we'd end up not removing the entry if the
revoked commitment transaction was reorg'd out. This would
ultimately cause us to spuriously resolve the HTLC(s) as the chain
advanced, even though we were doing so based on a now-reorged-out
transaction.
Luckily the fix is simple - set the correct txid in the
`OnchainEventEntry`. We also take this opportunity to update
logging in a few places with the txid of the transaction causing an
event.
This update also includes a minor refactor. The return type of
`pending_monitor_events` has been changed to a `Vec` tuple with the
`OutPoint` type. This associates a `Vec` of `MonitorEvent`s with a
funding outpoint.
We've also renamed `source/sink_channel_id` to `prev/next_channel_id` in
the favour of clarity.
Currently, if a channel's funding is locked in and then later
reorg'd back to half of the channel's minimum-depth we will
immediately force-close the channel. However, this can happen at
the fork-point while processing a reorg, and generally reorgs do
not reduce the block height at all, making this a rather useless
endeavor.
Ideally we'd never auto-force-close channels at all due to a reorg,
instead simply marking it as inactive until the funding
transaction is re-confirmed (or allowing the user to attempt to
force-close or force-closing once we're confident we have
completed reorg processing if we're at risk of losing funds
already received in the channel).
Sadly, we currently do not support changing a channel's SCID and
updating our SCID maps, so we cannot yet remove the automated
force-close logic. Still, there is no reason to do it until a
funding transaction has been removed from the chain.
This implements that change - only force-closeing once a channel's
funding transaction has been reorg'd out (still potentially at a
reorg's fork point). This continues to imply a 1-confirmation
channel will always be force-closed after a reorg of the funding
transaction, and will imply a similar behavior with 0-conf
channels.
This creates an SCID alias for all of our outbound channels, which
we send to our counterparties as a part of the `funding_locked`
message and then recognize in any HTLC forwarding instructions.
Note that we generate an SCID alias for all channels, including
already open ones, even though we currently have no way of
communicating to our peers the SCID alias for already-open
channels.
... by calling it both before and after every chain event in
testing and fuzzing.
This requires fixing some blockchain inconsistencies in
`do_test_onchain_htlc_reorg`, `do_retry_with_no_persist`, and
`do_test_dup_htlc_onchain_fails_on_reload` where we'd connect
conflicting transactions in the same chain.