This is largely motivated by some follow-up work for anchors that will
introduce an event handler for `BumpTransaction` events, which we can
now include in this new top-level `events` module.
This results in a new, potentially redundant, `ChannelMonitorUpdate`
that must be applied to `ChannelMonitor`s to broadcast the holder's
latest commitment transaction.
This is a behavior change for anchor channels since their commitments
may require additional fees to be attached through a child anchor
transaction. Recall that anchor transactions are only generated by the
event consumer after processing a `BumpTransactionEvent::ChannelClose`
event, which is yielded after applying a
`ChannelMonitorUpdateStep::ChannelForceClosed` monitor update. Assuming
the node operator is not watching the mempool to generate these anchor
transactions without LDK, an anchor channel which we had to fail when
deserializing our `ChannelManager` would have its commitment transaction
broadcast by itself, potentially exposing the node operator to loss of
funds if the commitment transaction's fee is not enough to be accepted
into the network's mempools.
When we receive an update_fulfill_htlc message, we immediately try
to "claim" the HTLC against the HTLCSource. If there is one, this
works great, we immediately generate a `ChannelMonitorUpdate` for
the corresponding inbound HTLC and persist that before we ever get
to processing our counterparty's `commitment_signed` and persisting
the corresponding `ChannelMonitorUpdate`.
However, if there isn't one (and this is the first successful HTLC
for a payment we sent), we immediately generate a `PaymentSent`
event and queue it up for the user. Then, a millisecond later, we
receive the `commitment_signed` from our peer, removing the HTLC
from the latest local commitment transaction as a side-effect of
the `ChannelMonitorUpdate` applied.
If the user has processed the `PaymentSent` event by that point,
great, we're done. However, if they have not, and we crash prior to
persisting the `ChannelManager`, on startup we get confused about
the state of the payment. We'll force-close the channel for being
stale, and see an HTLC which was removed and is no longer present
in the latest commitment transaction (which we're broadcasting).
Because we claim corresponding inbound HTLCs before updating a
`ChannelMonitor`, we assume such HTLCs have failed - attempting to
fail after having claimed should be a noop. However, in the
sent-payment case we now generate a `PaymentFailed` event for the
user, allowing an HTLC to complete without giving the user a
preimage.
Here we address this issue by storing the payment preimages for
claimed outbound HTLCs in the `ChannelMonitor`, in addition to the
existing inbound HTLC preimages already stored there. This allows
us to fix the specific issue described by checking for a preimage
and switching the type of event generated in response. In addition,
it reduces the risk of future confusion by ensuring we don't fail
HTLCs which were claimed but not fully committed to before a crash.
It does not, however, full fix the issue here - because the
preimages are removed after the HTLC has been fully removed from
available commitment transactions if we are substantially delayed
in persisting the `ChannelManager` from the time we receive the
`update_fulfill_htlc` until after a full commitment signed dance
completes we may still hit this issue. The full fix for this issue
is to delay the persistence of the `ChannelMonitorUpdate` until
after the `PaymentSent` event has been processed. This avoids the
issue entirely, ensuring we process the event before updating the
`ChannelMonitor`, the same as we ensure the upstream HTLC has been
claimed before updating the `ChannelMonitor` for forwarded
payments.
The full solution will be implemented in a later work, however this
change still makes sense at that point as well - if we were to
delay the initial `commitment_signed` `ChannelMonitorUpdate` util
after the `PaymentSent` event has been processed (which likely
requires a database update on the users' end), we'd hold our
`commitment_signed` + `revoke_and_ack` response for two DB writes
(i.e. `fsync()` calls), making our commitment transaction
processing a full `fsync` slower. By making this change first, we
can instead delay the `ChannelMonitorUpdate` from the
counterparty's final `revoke_and_ack` message until the event has
been processed, giving us a full network roundtrip to do so and
avoiding delaying our response as long as an `fsync` is faster than
a network roundtrip.
Our existing lockorder tests assume that a read lock on a thread
that is already holding the same read lock is totally fine. This
isn't at all true. The `std` `RwLock` behavior is
platform-dependent - on most platforms readers can starve writers
as readers will never block for a pending writer. However, on
platforms where this is not the case, one thread trying to take a
write lock may deadlock with another thread that both already has,
and is attempting to take again, a read lock.
Worse, our in-tree `FairRwLock` exhibits this behavior explicitly
on all platforms to avoid the starvation issue.
Thus, we shouldn't have any special handling for allowing recursive
read locks, so we simply remove it here.
fbc08477e8 purported to "move" the
`final_cltv_expiry_delta` field to `PaymentParamters` from
`RouteParameters`. However, for naive backwards-compatibility
reasons it left the existing on in place and only added a new,
redundant field in `PaymentParameters`.
It turns out there's really no reason for this - if we take a more
critical eye towards backwards compatibility we can figure out the
correct value in every `PaymentParameters` while deserializing.
We do this here - making `PaymentParameters` a `ReadableArgs`
taking a "default" `cltv_expiry_delta` when it goes to read. This
allows existing `RouteParameters` objects to pass the read
`final_cltv_expiry_delta` field in to be used if the new field
wasn't present.
This field was previous useful in manual retries for users to know when all
paths of a payment have failed and it is safe to retry. Now that we support
automatic retries in ChannelManager and no longer support manual retries, the
field is no longer useful.
For backwards compat, we now always write false for this field. If we didn't do
this, previous versions would default this field's value to true, which can be
problematic because some clients have relied on the field to indicate when a
full payment retry is safe.
Prior to this, we returned PaymentSendFailure from auto retry send payment
methods. This implied that we might return a PartialFailure from them, which
has never been the case. So it makes sense to rework the errors to be a better
fit for the methods.
We're taking error handling in a totally different direction now to make it
more asynchronous, see send_payment_internal for more information.
Long ago, we used the `no_connection_possible` to signal that a
peer has some unknown feature set or some other condition prevents
us from ever connecting to the given peer. In that case we'd
automatically force-close all channels with the given peer. This
was somewhat surprising to users so we removed the automatic
force-close, leaving the flag serving no LDK-internal purpose.
Distilling the concept of "can we connect to this peer again in the
future" to a simple flag turns out to be ripe with edge cases, so
users actually using the flag to force-close channels would likely
cause surprising behavior.
Thus, there's really not a lot of reason to keep the flag,
especially given its untested and likely to be broken in subtle
ways anyway.
The new in-`ChannelManager` retries logic does retries as two
separate steps, under two separate locks - first it calculates
the amount that needs to be retried, then it actually sends it.
Because the first step doesn't udpate the amount, a second thread
may come along and calculate the same amount and end up retrying
duplicatively.
Because we generally shouldn't ever be processing retries at the
same time, the fix is trivial - simply take a lock at the top of
the retry loop and hold it until we're done.
We're no longer supporting manual retries since
ChannelManager::send_payment_with_retry can be parameterized by a retry
strategy
This commit also updates all docs related to retry_payment and abandon_payment.
Since these docs frequently overlap with changes in preceding commits where we
start abandoning payments on behalf of the user, all the docs are updated in
one go.
Adds a new method, `list_recent_payments ` to `ChannelManager` that
returns an array of `RecentPaymentDetails` containing the payment
status (Fulfilled/Retryable/Abandoned) and its total amount across all
paths.
When we landed the initial in-`ChannelManager` payment retries, we
stored the `RouteParameters` in the payment info, and then re-use
it as-is for new payments. `RouteParameters` is intended to store
the information specific to the *route*, `PaymentParameters` exists
to store information specific to a payment.
Worse, because we don't recalculate the amount stored in the
`RouteParameters` before fetching a new route with it, we end up
attempting to retry the full payment amount, rather than only the
failed part.
This issue brought to you by having redundant data in
datastructures, part 5,001.
The documentation for `Retry` is very clear that it counts the
number of failed paths, not discrete retries. When we added
retries internally in `ChannelManager`, we switched to counting
the number if discrete retries, even if multiple paths failed and
were replace with multiple MPP HTLCs.
Because we are now rewriting retries, we take this opportunity to
reduce the places where retries are analyzed, specifically a good
chunk of code is removed from `pay_internal`.
Because we now retry multiple failed paths with one single retry,
we keep the new behavior, updating the docs on `Retry` to describe
the new behavior.
`TestRouter` allows us to simply select the `Route` that will be
returned in the next `find_route` call, but it does so without any
checking of what was *requested* for the call. This makes it a
somewhat dubious test utility as it very helpfully ensures we
ignore errors in the routes we're looking for.
Instead, we require users of `TestRouter` pass a `RouteParameters`
to `expect_find_route`, which we compare against the requested
parameters passed to `find_route`.
`PaymentParams` is all about the parameters for a payment, i.e. the
parameters which are static across all the paths of a paymet.
`RouteParameters` is about the information specific to a given
`Route` (i.e. a set of paths, among multiple potential sets of
paths for a payment). The CLTV delta thus doesn't belong in
`RouterParameters` but instead in `PaymentParameters`.
Worse, because `RouteParameters` is built from the information in
the last hops of a `Route`, when we deliberately inflate the CLTV
delta in path-finding, retries of the payment will have the final
CLTV delta double-inflated as it inflates starting from the final
CLTV delta used in the last attempt.
By moving the CLTV delta to `PaymentParameters` we avoid this
issue, leaving only the sought amount in the `RouteParameters`.
Adds two new payment `Method`s for identifying payments with custom
`min_final_cltv_expiry_delta` as payments with LDK or user payment
hashes.
The `min_final_cltv_expiry_delta` value is packed into the first 2
bytes of the expiry timestamp in the payment secret metadata.
This is purely a refactor that does not change the InitFeatures
advertised by a ChannelManager. This allows users to configure which
features should be advertised based on the values of `UserConfig`. While
there aren't any existing features currently leveraging this behavior,
it will be used by the upcoming anchors_zero_fee_htlc_tx feature.
The UserConfig dependency on provided_init_features caused most
callsites of the main test methods responsible for opening channels to
be updated. This commit foregos that completely by no longer requiring
the InitFeatures of each side to be provided to these methods. The
methods already require a reference to each node's ChannelManager to
open the channel, so we use that same reference to obtain their
InitFeatures. A way to override such features was required for some
tests, so a new `override_init_features` config option now exists on
the test harness.