The `chain::Listen` interface provides a block-connection-based
alternative to the `chain::Confirm` interface, which supports
providing transaction data at a time separate from the block
connection time.
For users who are downloading the full headers tree (e.g. from a
node over the Bitcoin P2P protocol) but who are not downloading
full blocks (e.g. because they're using BIP 157/158 filtering)
there is no API that matches exactly their event stream -
`chain::Listen` requries full blocks for each block,
`chain::Confirm` requires breaking each connection event into two
calls.
Given its incredibly trivial to take a `TransactionData` in
addition to a `Block` in `chain::Listen` we do so here, adding a
default-implementation `block_connected` which simply creates the
`TransactionData`, which ultimately all of the `chain::Listen`
implementations currently do anyway.
Closes#1128.
MAX_FUNDING_SATOSHIS will no longer be accurately named once wumbo is merged.
Also, we'll want to check that wumbo channels don't exceed the total bitcoin supply
`ChannelDetails::outbound_capacity_msat` describes the total amount
available for sending across several HTLCs, basically just our
balance minus the reserve value maintained by our counterparty.
However, when routing we use it to guess the maximum amount we can
send in a single additional HTLC, which it is not.
There are numerous reasons why our balance may not match the amount
we can send in a single HTLC, whether the HTLC in-flight limit, the
channe's HTLC maximum, or our feerate buffer.
This commit splits the `outbound_capacity_msat` field into two -
`outbound_capacity_msat` and `outbound_htlc_limit_msat`, setting us
up for correctly handling our next-HTLC-limit in the future.
This also addresses the first of the reasons why the values may
not match - the max-in-flight limit. The inaccuracy is ultimately
tracked as #1126.
As part of preparing to expose some of its methods as pub for ChannelManager-less
phantom invoice generation.
Pure code move of the module + the addition of module-level documentation
There's not a lot of reason to keep it given its used in one place
outside of tests, and this lets us clean up some of the byte_utils
calls that are still lying around.
When we fail an HTLC which was destined for a channel that the HTLC
sender didn't know the real SCID for, we should ensure we continue
to use the alias in the channel_update we provide them. Otherwise
we will leak the channel's real SCID to HTLC senders.
This reduces unwraps in channelmanager by a good bit, providing
robustness for the upcoming 0conf changes which allow SCIDs to be
missing after a channel is in use, making
`get_channel_update_for_unicast` more fallible.
This also serves as a useful refactor for the next commit,
consolidating the channel_update creation sites which are changed
in the next commit.
Because negotiating `scid_alias` for all of our channels will cause
us to create channels which LDK versions prior to 0.0.106 do not
understand, we disable `scid_alias` negotiation by default.
This does not, however, ever send the scid_alias feature bit for
outgoing channels, as that would cause the immediately prior
version of LDK to be unable to read channel data.
As we add new supported channel types, inbound channels which use
new features may cause backwards-compatibility issues for clients.
If a new channel is opened using new features while a client still
wishes to ensure support for downgrading to a previous version of
LDK, that new channel may cause the `ChannelManager` to fail
deserialization due to unsupported feature flags.
By exposing the channel type flags to the user in channel requests,
users wishing to support downgrading to previous versions of LDK
can reject channels which use channel features which previous
versions of LDK do not understand.
Type aliases are now more robustly being exported in the C bindings
generator, which requires ensuring we don't include some type
aliases which make no sense in bindings.
On connection, if our peer supports gossip queries, and we never
send a `gossip_timestamp_filter`, our peer is supposed to never
send us gossip outside of explicit queries. Thus, we'll end up
always having stale gossip information after the first few
connections we make to peers.
The solution is to send a dummy `gossip_timestamp_filter`
immediately after connecting to peers.
Its somewhat strange to have a trait method which is named after
the intended action, rather than the action that occurred, leaving
it up to the implementor what action they want to take.
Previously, if we were offline when a funding transaction was
locked in, and then we came back online, calling
`best_block_updated` once followed by `transactions_confirmed`,
we'd not generate a funding_locked until the next
`best_block_updated`.
We address this by re-calling `best_block_updated` in
`transactions_confirmed`, similar to how `ChannelMonitor` works.