In the next commit(s) we'll start holding `ChannelMonitorUpdate`s
that are being persisted in `Channel`s until they're done
persisting. In order to do that, switch to applying the updates by
reference instead of value.
When a `chain::Watch` `ChannelMonitor` update method is called, the
user has three options:
(a) persist the monitor update immediately and return success,
(b) fail to persist the monitor update immediately and return
failure,
(c) return a flag indicating the monitor update is in progress and
will complete in the future.
(c) is rather harmless, and in some deployments should be expected
to be the return value for all monitor update calls, but currently
requires returning `Err(ChannelMonitorUpdateErr::TemporaryFailure)`
which isn't very descriptive and sounds scarier than it is.
Instead, here, we change the return type used to be a single enum
(rather than a Result) and rename `TemporaryFailure`
`UpdateInProgress`.
This resolves several user complaints (and issues in the sample
node) where startup is substantially delayed as we're always
waiting for the chain data to sync.
Further, in an upcoming PR, we'll be reloading pending payments
from ChannelMonitors on restart, at which point we'll need the
change here which avoids handling events until after the user
has confirmed the `ChannelMonitor` has been persisted to disk.
It will avoid a race where we
* send a payment/HTLC (persisting the monitor to disk with the
HTLC pending),
* force-close the channel, removing the channel entry from the
ChannelManager entirely,
* persist the ChannelManager,
* connect a block which contains a fulfill of the HTLC, generating
a claim event,
* handle the claim event while the `ChannelMonitor` is being
persisted,
* persist the ChannelManager (before the CHannelMonitor is
persisted fully),
* restart, reloading the HTLC as a pending payment in the
ChannelManager, which now has no references to it except from
the ChannelMonitor which still has the pending HTLC,
* replay the block connection, generating a duplicate PaymentSent
event.
In the next commit, we'll be originating monitor updates both from
the ChainMonitor and from the ChannelManager, making simple
sequential update IDs impossible.
Further, the existing async monitor update API was somewhat hard to
work with - instead of being able to generate monitor_updated
callbacks whenever a persistence process finishes, you had to
ensure you only did so at least once all previous updates had also
been persisted.
Here we eat the complexity for the user by moving to an opaque
type for monitor updates, tracking which updates are in-flight for
the user and only generating monitor-persisted events once all
pending updates have been committed.
The `ChannelKeys` object really isn't about keys at all anymore,
its all about signing. At the same time, we rename the type aliases
used in traits from both `ChanKeySigner` and `Keys` to just
`Signer` (or, in contexts where Channel isnt clear, `ChanSigner`).
- The ChainMonitor should:
Whenever a new channel is added or updated, these updates
should be conveyed to the persister and persisted to disk.
Even if the update errors while it's being applied, the
updated monitor still needs to be persisted.
This changes the LICENSE file and adds license headers to most files
to relicense under dual Apache-2.0 and MIT. This is helpful in that
we retain the patent grant issued under Apache-2.0-licensed work,
avoiding some sticky patent issues, while still allowing users who
are more comfortable with the simpler MIT license to use that.
See https://github.com/rust-bitcoin/rust-lightning/issues/659 for
relicensing statements from code authors.