When we receive a `channel_reestablish` with a `data_loss_protect`
that proves we're running with a stale state, instead of
force-closing the channel, we immediately panic. This lines up with
our refusal to run if we find a `ChannelMonitor` which is stale
compared to our `ChannelManager` during `ChannelManager`
deserialization. Ultimately both are an indication of the same
thing - that the API requirements on `chain::Watch` were violated.
In the "running with outdated state but ChannelMonitor(s) and
ChannelManager lined up" case specifically its likely we're running
off of an old backup, in which case connecting to peers with
channels still live is explicitly dangerous. That said, because
this could be an operator error that is correctable, panicing
instead of force-closing may allow for normal operation again in
the future (cc #1207).
In any case, we provide instructions in the panic message for how
to force-close channels prior to peer connection, as well as a note
on how to broadcast the latest state if users are willing to take
the risk.
Note that this is still somewhat unsafe until we resolve#1563.
If a user restores from a backup that they know is stale, they'd
like to force-close all of their channels (or at least the ones
they know are stale) *without* broadcasting the latest state,
asking their peers to do so instead. This simply adds methods to do
so, renaming the existing `force_close_channel` and
`force_close_all_channels` methods to disambiguate further.
This is mostly motivated by the fact that payments may happen while the
latest `ChannelUpdate` indicating our new `ChannelConfig` is still
propagating throughout the network. By temporarily allowing the previous
config, we can help reduce payment failures across the network.
We do this to prevent payment failures while the `ChannelUpdate` for the
new `ChannelConfig` still propagates throughout the network. In a follow
up commit, we'll honor forwarding HTLCs that were constructed based on
either the previous or current `ChannelConfig`.
To handle expiration (when we should stop allowing the previous config),
we rely on the ChannelManager's `timer_tick_occurred` method. After
enough ticks, the previous config is cleared from memory, and only the
current config applies moving forward.
A new `update_channel_config` method is exposed on the `ChannelManger`
to update the `ChannelConfig` for a set of channels atomically. New
`ChannelUpdate` events are generated for each eligible channel.
Note that as currently implemented, a buggy and/or
auto-policy-management client could spam the network with updates as
there is no rate-limiting in place. This could already be done with
`broadcast_node_announcement`, though users are less inclined to update
that as frequently as its data is mostly static.
As we prepare to expose an API to update a channel's ChannelConfig,
we'll also want to expose this struct to consumers such that they have
insights into the current ChannelConfig applied for each channel.
If the funding transaction is timelocked beyond the next block of
our best known chain tip, return an APIError instead of silently
failing at broadcast attempt.
P2PGossipSync logs before delegating to NetworkGraph in its
EventHandler. In order to share this handling with RapidGossipSync,
NetworkGraph needs to take a logger so that it can implement
EventHandler instead.
`ChannelManager::fail_htlc_backwards`' bool return value is quite
confusing - just because it returns false doesn't mean the payment
wasn't (already) failed. Worse, in some race cases around shutdown
where a payment was claimed before an unclean shutdown and then
retried on startup, `fail_htlc_backwards` could return true even
though (a duplicate copy of the same payment) was claimed, but the
claim event has not been seen by the user yet.
While its possible to use it correctly, its somewhat confusing to
have a return value at all, and definitely lends itself to misuse.
Instead, we should push users towards a model where they don't care
if `fail_htlc_backwards` succeeds - either they've locally marked
the payment as failed (prior to seeing any `PaymentReceived`
events) and will fail any attempts to pay it, or they have not and
the payment is still receivable until its timeout time is reached.
We can revisit this decision based on user feedback, but will need
to very carefully document the potential failure modes here if we
do.
As additional sanity checks, before claiming a payment, we check
that we have the full amount available in `claimable_htlcs` that
the payment should be for. Concretely, this prevents one
somewhat-absurd edge case where a user may receive an MPP payment,
wait many *blocks* before claiming it, allowing us to fail the
pending HTLCs and the sender to retry some subset of the payment
before we go to claim. More generally, this is just good
belt-and-suspenders against any edge cases we may have missed.
If we crashed during a payment claim and then detected a partial
claim on restart, we should ensure the user is aware that the
payment has been claimed. We do so here by using the new
partial-claim detection logic to create a `PaymentClaimed` event.
This supports routing outbound over 0-conf channels by utilizing
the outbound SCID alias that we assign to all channels to refer to
the selected channel when routing.
If our peer sets a minimum depth of 0, and we're set to trusting
ourselves to not double-spend our own funding transactions, send a
funding_locked message immediately after funding signed.
Note that some special care has to be taken around the
`channel_state` values - `ChannelFunded` no longer implies the
funding transaction is confirmed on-chain. Thus, for example, the
should-we-re-broadcast logic has to now accept `channel_state`
values greater than `ChannelFunded` as indicating we may still need
to re-broadcast our funding tranasction, unless `minimum_depth` is
greater than 0.
Further note that this starts writing `Channel` objects with a
`MIN_SERIALIZATION_VERSION` of 2. Thus, LDK versions prior to
0.0.99 (July 2021) will now refuse to read serialized
Channels/ChannelManagers.
In the next few commits we add support for 0conf channels, allowing
us to have an active channel with HTLC and other updates flying
prior to having an SCID available. This would break several
assumptions made in `ChannelManager`, which we address here by
looking at SCID aliases in addition to SCIDs.
While the HTLC-claim process happens across all MPP parts under one
lock, this doesn't imply that they are claimed fully atomically on
disk. Ultimately, an application can crash after persisting one
`ChannelMonitorUpdate` out of multiple monitor updates needed for
the full claim.
Previously, this would leave us in a very bad state - because of
the all-channels-available check in `claim_funds` we'd refuse to
claim the payment again on restart (even though the
`PaymentReceived` event will be passed to the user again), and we'd
end up having partially claimed the payment!
The fix for the consistency part of this issue is pretty
straightforward - just check for this condition on startup and
complete the claim across all channels/`ChannelMonitor`s if we
detect it.
This still leaves us in a confused state from the perspective of
the user, however - we've actually claimed a payment but when they
call `claim_funds` we return `false` indicating it could not be
claimed.
In `HTLCUpdate` and `OnchainEvent` tracking, we store the HTLC
value (rounded down to whole satoshis). This is somewhat
confusingly referred to as the `onchain_value_satoshis` even though
it refers to the commitment transaction output value, not the value
available on chain (which may have been reduced by an
HTLC-Timeout/HTLC-Success transaction).
In fc77c57c3c we stopped using the
`FInalOnionHopData` in `OnionPayload::Invoice` directly and intend
to remove it eventually. However, in the next few commits we need
access to the payment secret when claimaing a payment, as we create
a new `PaymentPurpose` during the claim process for a new event.
In order to get access to a `PaymentPurpose` without having access
to the `FinalOnionHopData` we here change the storage of
`claimable_htlcs` to store a single `PaymentPurpose` explicitly
with each set of claimable HTLCs.
In fc77c57c3c we stopped using the
`FinalOnionHopData` in `OnionPayload::Invoice` directly and renamed
it `_legacy_hop_data` with the intent of removing it in a few
versions. However, we continue to check that it was included in the
serialized data, meaning we would not be able to remove it without
breaking ability to serialize full `ChannelManager`s.
This fixes that by making the `_legacy_hop_data` an `Option` which
we will happily handle just fine if its `None`.
This update also includes a minor refactor. The return type of
`pending_monitor_events` has been changed to a `Vec` tuple with the
`OutPoint` type. This associates a `Vec` of `MonitorEvent`s with a
funding outpoint.
We've also renamed `source/sink_channel_id` to `prev/next_channel_id` in
the favour of clarity.