Features for a given context are duplicated throughout the features
module. Use a macro for defining a Context and the applicable features
such that features only need to be defined for a Context in one place.
The Context provides bitmasks for selecting known and unknown feature
flags.
BOLT 1 and BOLT 9 refer to features as "known" if a peer understands
them. They also use the term "supported" to mean either optional or
required.
Update the features module to use similar terminology.
- Define contexts in terms of required and optional features rather than
just supported features
- Define known features as those that are optional or required
- Rename supported() constructor to known()
For completeness, clear_optional_bit for each feature is now called
clear_bits and clears both optional and required bits.
The initial_routing_sync feature is set by peer_handler whenever a full
sync of the network graph is desired. It is not explicitly set when
creating features with InitFeatures::supported().
An upcoming refactor will change supported() to known(), which will
return all features known by the implementation. Thus, the
initial_routing_sync flag will need to be set by default. This commit
makes the behavior change ahead of the refactor.
This is a somewhat-obvious oversight in the capabilities of
rust-lightning, though not a particularly interesting one until we
start relying on node_features (eg for variable-length-onions and
Base AMP).
Sadly its not fully automated as we don't really want to store the
list of available addresses from the user. However, with a simple
call to ChannelManager::broadcast_node_announcement and a sensible
peer_handler, the announcement is made.
In testing, due to other patches, I managed to flood the send queue
with messages and cause us not to be able to send pings, thus
getting a peer disconnected for ping timeout. To my surprise, this
also force-closed all of my channels with that peeer.
Obviously a ping timeout does not indicate that no future connection
with said peer will be possible, and we shouldn't be force-closing
channels as a result.
This also logs when a peer is disconnected to ping timeout to make
debug easier.
The way PeerHandler was written, it was supposed to remove from
self.peers iff the API docs indicate that disconnect_event should
NOT be called (and otherwise rely on disconnect_event to do so).
Sadly, the implementation was way out of whack with reality - in
the implementation, essentially anywhere where PeerHandler
originated the disconnection, the peer was removed and no
disconnect_event was expected. The docs, however, indicated that
disconnect_event should nearly only be called, only not doing so
when the initial handshake message never completed.
We opt to change the docs, mostly, as well as clean up the
ping/pong handling somewhat and rename a few functions to clarify
what they actually do.
PeerManager determines whether the initial_routing_sync feature bit
should be set when sending Init messages to peers. Move this to the
Router as it is better able to determine if a full sync is needed.
Create a MessageType abstraction and use it throughout the wire module's
external interfaces. Include an is_even method for clients to determine
how to handle unknown messages.
Lightning messages are identified by a 2-byte type when encoded on the
wire. Rather than expecting callers to know message types when sending
messages to peers, have each message implement a trait defining the
message type. Provide an interface for reading and writing messages
as well as a Message enum for matching the decoded message, including
unknown messages.
Additional changes:
* Update fuzz crate to match ChannelManager's new API
* Update lightning-net-tokio library to match ChannelManager's new ChannelMonitor Deref API
* Update tests to match ChannelManager's new ChannelMonitor Deref API
Accessing a struct through an std::syn::MutexGuard using implicit
dereferencing can confuse the borrow checker. This situation arises when
obtaining mutable references to more than one field of the struct, which
is normally allowed.
https://doc.rust-lang.org/nomicon/borrow-splitting.html
However, when using implicit dereferencing, a mutable reference to the
the entire struct is taken. Thus, attempting to access another field in
this manner will lead to a compilation error.
https://doc.rust-lang.org/error-index.html#E0499
A simple way to avoid this is to first obtain a mutable reference to the
struct using explicit dereferencing.
The Features::new() method is nonsense and doesn't describe what
features were being set - we introduce an empty() and supported()
constructors instead.
This merges local and global features into one struct, which is
parameterized by where it appers. The parameterization restricts
which queries can be made and which features can be set, in line
with the latest BOLT 9.
Closes#427.
Simplify interfaces between ChannelMessageHandler and PeerManager,
by switching all ChannelMessageHandler errors to HandleError sent
internally instead of being return. With further refactors in Router
and PeerChannelEncryptor, errors management on the PeerManager-side
won't be splitted between try_potential_handleerror and HandleError
processing.
Inside ChannelManager, we now log MsgHandleErrInternal and send
ErrorAction to PeerManager.
On a high-level, it should allow client using API to be more flexible
by polling events instead of waiting function call returns.
We also update handle_error macro to take channel_state_lock from
caller which should avoid some deadlock potential for some edges
cases.
Filter out IgnoreError in handle_error macro, update test in
consequence.