Rather than using the std benchmark framework (which isn't
maintained and is unlikely to get any further maintenance), we swap
for criterion, which at least gets us a variable number of test
runs so our benchmarks don't take forever.
We also fix the RGS benchmark to pass now that the file in use is
stale compared to today's date.
To match the local signatures found in test vectors, we must make sure
we don't use any additional randomess when generating signatures, as
we'll arrive at a different signature otherwise.
`hashbrown` depends on `ahash` which depends on `once_cell`. Sadly,
in https://github.com/matklad/once_cell/issues/201 the `once_cell`
maintainer decided they didn't want to do the work of having an
MSRV policy for `once_cell`, making `ahash`, and thus `hashbrown`
require the latest compiler. I've reached out to `ahash` to suggest
they drop the dependency (as they could trivially work around not
having it), but until then we simply downgrade `hashbrown`.
`rust-bitcoin` also requires an older `hashbrown` so we're actually
reducing our total `no-std` code here anyway.
`cargo bench` sets `cfg(test)`, causing us to hit some test-only
code in the router when benchmarking, throwing off our benchmarks
substantially. Here we swap from the `unstable` feature to a more
clearly internal feature (`_bench_unstable`) and also checking for
it when enabling test-only code.
This will allow the ChannelManager to signal when it has new
updates to persist, and adds a way for ChannelManager persisters
to be notified when they should re-persist the ChannelManager
to disk/backups.
Feature-gate the wait_timeout function because the core
lightning crate shouldn't depend on wallclock time unless
users opt into it.
Sadly rust upstream never really figured out the benchmark story,
and it looks like the API we use here may not be long for this
world. Luckily, we can switch to criterion with largely the same
API if that happens before upstream finishes ongoing work with the
custom test framework stuff.
Sadly, it requires fetching the current network graph, which I did
using Val's route-testing script written to test the MPP router.
CommitmentTransaction maintains the per-commitment transaction fields needed to construct the associated bitcoin transactions (commitment, HTLC). It replaces passing around of Bitcoin transactions. The ChannelKeys API is modified accordingly.
By regenerating the transaction when implementing a validating external signer, this allows a higher level of assurance that all relevant aspects of the transactions were checked for policy violations.
ChannelTransactionParameters replaces passing around of individual per-channel fields that are needed to construct Bitcoin transactions.
Eliminate ChannelStaticData in favor of ChannelTransactionParameters.
Use counterparty txid instead of tx in channelmonitor update.