In 2826af75a5 we fixed a fuzz crash
in which the total reserve values in a channel were greater than
the funding amount, checked when an incoming channel is accepted.
This, however, did not fix the same issue for outbound channels,
where a peer can accept a channel with a nonsense reserve value in
the `accept_channel` message. The `full_stack_target` fuzzer
eventually found its way into the same issue, which this resolves.
Thanks (again) to Chaincode Labs for providing the fuzzing
resources which found this bug!
Currently, if a channel's funding is locked in and then later
reorg'd back to half of the channel's minimum-depth we will
immediately force-close the channel. However, this can happen at
the fork-point while processing a reorg, and generally reorgs do
not reduce the block height at all, making this a rather useless
endeavor.
Ideally we'd never auto-force-close channels at all due to a reorg,
instead simply marking it as inactive until the funding
transaction is re-confirmed (or allowing the user to attempt to
force-close or force-closing once we're confident we have
completed reorg processing if we're at risk of losing funds
already received in the channel).
Sadly, we currently do not support changing a channel's SCID and
updating our SCID maps, so we cannot yet remove the automated
force-close logic. Still, there is no reason to do it until a
funding transaction has been removed from the chain.
This implements that change - only force-closeing once a channel's
funding transaction has been reorg'd out (still potentially at a
reorg's fork point). This continues to imply a 1-confirmation
channel will always be force-closed after a reorg of the funding
transaction, and will imply a similar behavior with 0-conf
channels.
The `full_stack_target` fuzzer managed to find a subtraction
underflow in the new `Channel::get_htlc_maximum` function where we
subtract both sides' reserve values from the channel funding. Such
a channel is obviously completely useless, so we should reject it
during opening instead of integer-underflowing later.
Thanks to Chaincode Labs for providing the fuzzing resources which
found this bug!
MAX_FUNDING_SATOSHIS will no longer be accurately named once wumbo is merged.
Also, we'll want to check that wumbo channels don't exceed the total bitcoin supply
`ChannelDetails::outbound_capacity_msat` describes the total amount
available for sending across several HTLCs, basically just our
balance minus the reserve value maintained by our counterparty.
However, when routing we use it to guess the maximum amount we can
send in a single additional HTLC, which it is not.
There are numerous reasons why our balance may not match the amount
we can send in a single HTLC, whether the HTLC in-flight limit, the
channe's HTLC maximum, or our feerate buffer.
This commit splits the `outbound_capacity_msat` field into two -
`outbound_capacity_msat` and `outbound_htlc_limit_msat`, setting us
up for correctly handling our next-HTLC-limit in the future.
This also addresses the first of the reasons why the values may
not match - the max-in-flight limit. The inaccuracy is ultimately
tracked as #1126.
Because negotiating `scid_alias` for all of our channels will cause
us to create channels which LDK versions prior to 0.0.106 do not
understand, we disable `scid_alias` negotiation by default.
This does not, however, ever send the scid_alias feature bit for
outgoing channels, as that would cause the immediately prior
version of LDK to be unable to read channel data.
As we add new supported channel types, inbound channels which use
new features may cause backwards-compatibility issues for clients.
If a new channel is opened using new features while a client still
wishes to ensure support for downgrading to a previous version of
LDK, that new channel may cause the `ChannelManager` to fail
deserialization due to unsupported feature flags.
By exposing the channel type flags to the user in channel requests,
users wishing to support downgrading to previous versions of LDK
can reject channels which use channel features which previous
versions of LDK do not understand.
As a part of adding SCID aliases to channels, we now have to accept
otherwise-redundant funding_locked messages which serve only to
update the SCID alias. Previously, we'd failt he channel as such
an update used to be bogus.
This creates an SCID alias for all of our outbound channels, which
we send to our counterparties as a part of the `funding_locked`
message and then recognize in any HTLC forwarding instructions.
Note that we generate an SCID alias for all channels, including
already open ones, even though we currently have no way of
communicating to our peers the SCID alias for already-open
channels.
New `funding_locked` messages can include SCID aliases which our
counterparty will recognize as "ours" for the purposes of relaying
transactions to us. This avoids telling the world about our
on-chain transactions every time we want to receive a payment, and
will allow for receiving payments before the funding transaction
appears on-chain.
Here we store the new SCID aliases and use them in invoices instead
of he "standard" SCIDs.
Somehow, our channel type implementation doesn't echo back the
channel type as we believe it was negotiated, as we should. Though
the spec doesn't explicitly require this, some implementations may
require it and it appears to have been in the BOLTs from the start
of the channel type logic.
Add functional tests for manually responding to inbound channel requests.
Responding to inbound channel requests are required when the
`manually_accept_inbound_channels` config flag is set to true.
The tests cover the following cases:
* Accepting an inbound channel request
* Rejecting an inbound channel request
* FundingCreated message sent by the counterparty before accepting the
inbound channel request
* Attempting to accept an inbound channel request twice
* Attempting to accept an unkown inbound channel
Add a new config flag `UserConfig::manually_accept_inbound_channels`,
which when set to true allows the node operator to accept or reject new
channel requests.
When set to true, `Event::OpenChannelRequest` will be triggered once a
request to open a new inbound channel is received. When accepting the
request, `ChannelManager::accept_inbound_channel` should be called.
Rejecting the request is done through
`ChannelManager::force_close_channel`.
Given the balance is reported as "total balance if we went to chain
ignoring fees", it seems reasonable to include claimed HTLCs - if
we went to chain we'd get those funds, less on-chain fees. Further,
if we do not include them, its possible to have pending outbound
holding-cell HTLCs underflow the balance calculation, causing a
panic in debug mode, and bogus values in release.
This resolves a subtraction underflow bug found by the
`chanmon_consistency` fuzz target.
We currently allow users to provide an `override_config` in
`ChannelManager::create_channel` which it seems should apply to the
channel. However, because we don't store any of it, the only parts
which we apply to the channel are those which are set in the
`Channel` object immediately in `Channel::new_outbound` and used
from there.
This is great in most cases, however the
`UserConfig::peer_channel_config_limits` `ChannelHandshakeLimits`
object is used in `accept_channel` to bound what is acceptable in
our peer's `AcceptChannel` message. Thus, for outbound channels, we
are given a full `UserConfig` object to "override" the default
config, but we don't use any of the handshake limits specified in
it.
Here, we move to storing the `ChannelHandshakeLimits` explicitly
and applying it when we receive our peer's `AcceptChannel`. Note
that we don't need to store it anywhere because if we haven't
received an `AcceptChannel` from our peer when we reload from disk
we will forget the channel entirely anyway.
Channel::get_announcement_sigs is only used in contexts where we
have a logger already, and the error returned is always ignored, so
instead of returning an ignored error message we return an `Option`
directly and log when it won't be too verbose.
The spec actually requires we never send `announcement_signatures`
(and, thus, `channel_announcement`s) until after six confirmations.
However, we would happily have sent them prior to that as long as
we exchange `funding_locked` messages with our countarparty. Thanks
to re-broadcasting this issue is largely harmless, however it could
have some negative interactions with less-robust peers. Much more
importantly, this represents an important step towards supporting
0-conf channels, where `funding_locked` messages may be exchanged
before we even have an SCID to construct the messages with.
Because there is no ACK mechanism for `announcement_signatures` we
rely on existing channel updates to stop rebroadcasting them - if
we sent a `commitment_signed` after an `announcement_signatures`
and later receive a `revoke_and_ack`, we know our counterparty also
received our `announcement_signatures`. This may resolve some rare
edge-cases where we send a `funding_locked` which our counterparty
receives, but lose connection before the `announcement_signatures`
(usually the very next message) arrives.
Sadly, because the set of places where an `announcement_signatures`
may now be generated more closely mirrors where `funding_locked`
messages may be generated, but they are now separate, there is a
substantial amount of code motion providing relevant parameters
about current block information and ensuring we can return new
`announcement_signatures` messages.
If we have not yet sent `funding_locked` only because of a pending
channel monitor update, we shouldn't consider a channel
`is_usable`. This has a number of downstream effects, including
not attempting to route payments through the channel, not sending
private `channel_update` messages to our counterparty, or sending
channel_announcement messages if our couterparty has already signed
for it.
We further gate generation of `node_announcement`s on `is_usable`,
preventing generation of those or `announcement_signatures` until
we've sent our `funding_locked`.
Finally, `during_funding_monitor_fail` is updated to test a case
where we see the funding transaction lock in but have a pending
monitor update failure, then receive `funding_locked` from our
counterparty and ensure we don't generate the above messages until
after the monitor update completes.
While its generally harmless to do so (the messages will simply be
dropped in `PeerManager`) there is a potential race condition where
the FundingLocked message enters the outbound message queue, then
the peer reconnects, and then the FundingLocked message is
delivered prior to the normal ChannelReestablish flow.
We also take this opportunity to rewrite
`test_funding_peer_disconnect` to be explicit instead of using
`reconnect_peers`. This allows it to check each message being sent
carefully, whereas `reconnect_peers` is rather lazy and accepts
that sometimes signatures will be exchanged, and sometimes not.
This is harmless outside of debug builds - the feerate will
overflow causing it to either spuriously fail the first check, or
correctly pass it and fail the second check. In debug builds,
however, it panics due to integer overflow.
Found by the `full_stack_target` fuzz test in the
Chaincode-provided continuous fuzzing. Thanks Chaincode!
This removes one more place where we directly access the node_id
secret key in `ChannelManager`, slowly marching towards allowing
the node_id secret key to be offline in the signer.
More importantly, it allows more ChannelAnnouncement logic to move
into the `Channel` without having to pass the node secret key
around, avoiding the announcement logic being split across two
files.