In the coming commits, we need to delay `ChannelMonitorUpdate`s
until future actions (specifically `Event` handling). However,
because we should only notify users once of a given
`ChannelMonitorUpdate` and they must be provided in-order, we need
to track which ones have or have not been given to users and, once
updating resumes, fly the ones that haven't already made it to
users.
To do this we simply add a `bool` in the `ChannelMonitorUpdate` set
stored in the `Channel` which indicates if an update flew and
decline to provide new updates back to the `ChannelManager` if any
updates have their flown bit unset.
Further, because we'll now by releasing `ChannelMonitorUpdate`s
which were already stored in the pending list, we now need to
support getting a `Completed` result for a monitor which isn't the
only pending monitor (or even out of order), thus we also rewrite
the way monitor updates are marked completed.
To match the local signatures found in test vectors, we must make sure
we don't use any additional randomess when generating signatures, as
we'll arrive at a different signature otherwise.
This allows the `InMemorySigner` to produce its own randomness, which we
plan to use when generating signatures in future work.
We can no longer derive `Clone` due to the `AtomicCounter`, so we opt to
implement it manually.
We correctly send out a gossip channel disable update after one
full time tick being down (1-2 minutes). This is pretty nice in
that it avoids nodes trying to route through our nodes too often
if they're down. Other nodes have a much longer time window,
causing them to have much less aggressive channel disables. Sadly,
at one minute it's not super uncommon for tor nodes to get disabled
(once a day or so on two nodes I looked at), and this causes the
lightning terminal scorer to consider the LDK node unstable (even
though it's the one doing the disabling - so is online). This
causes user frustration and makes LDK look bad (even though it's
probably failing fewer payments).
Given this, and future switches to block-based `channel_update`
timestamp fields, it makes sense to go ahead and switch to delaying
channel disable announcements for 10 minutes. This puts us more in
line with other implementations and reduces gossip spam, at the
cost of less reliable payments.
Fixes#2175, at least the currently visible parts.
Many of the fields in `HTLCSource::OutboundRoute` are used to
rebuild the pending-outbound-payment map on reload if the
`ChannelManager` was not serialized though `ChannelMonitor`(s)
were after an HTLC was sent. As of 0.0.114, however, such payments
are not retryable without allowing them to fail and doing a full,
fresh, send.
Thus, some of the fields can be safely removed - we only really
care about having enough information to provide the user a failure
event, not being able to retry.
Here we drop one such field - the `payment_secret`, making our
`ChannelMonitorUpdate`s another handful of bytes smaller.
Currently, users don't have good way of being notified when channel open
negotiations have succeeded and new channels are pending confirmation on
chain. To this end, we add a new `ChannelPending` event that is emitted
when send or receive a `funding_signed` message, i.e., at the last
moment before waiting for the confirmation period.
We track whether the event had previously been emitted in `Channel` and
remove it from `internal_funding_created` entirely. Hence, we now
only emit the event after ChannelMonitorUpdate completion, or upon
channel reestablish. This mitigates a race condition where where we
wouldn't persist the event *and* wouldn't regenerate it on restart,
therefore potentially losing it, if async CMU wouldn't complete before
ChannelManager persistence.
`ChannelMonitorUpdate`s are our most size-sensitive objects - they
are the minimal objects which need to be written to disk on each
commitment update. Thus, we should be careful to ensure we don't
pack too much extraneous information into each one.
Here we add future support for removing the per-HTLC explicit
`Option<Signature>` and `HTLCInCommitmentUpdate` for non-dust HTLCs
in holder commitment tx updates, which are redundant with the
`HolderCommitmentTransaction`.
While we cannot remove them entirely as previous versions rely on
them, adding support for filling in the in-memory structures from
the redundant fields will let us remove them in a future version.
We also add test-only generation logic to test the new derivation.
This is largely motivated by some follow-up work for anchors that will
introduce an event handler for `BumpTransaction` events, which we can
now include in this new top-level `events` module.
Currently, all that is required to force close a channel is to broadcast
either of the available commitment transactions, but this changes with
anchor outputs – commitment transactions may need to have
additional fees attached in order to confirm in a timely manner. While
we may be able to just queue a new update using the channel's next
available update ID, this may result in a violation of the
`ChannelMonitor` API (each update ID must strictly increase by 1) if the
channel had updates that were persisted by its `ChannelMonitor`, but not
the `ChannelManager`. Therefore, we choose to re-purpose the existing
`CLOSED_CHANNEL_UPDATE_ID` update ID to also apply to
`ChannelMonitorUpdate`s that will force close their respective channel
by broadcasting the holder's latest commitment transaction.
The amount for HTLC #6 was updated in the spec's test vectors, but the
"same amount and preimage" test vector itself was not updated, even
though the new HTLC amount resulted in a different commitment
transaction, and thus, different signatures.
Tests the case where only one anchor output exists for the funder in the
commitment transaction due to the remote having a dust balance (in this
case, 0).
When we receive an update_fulfill_htlc message, we immediately try
to "claim" the HTLC against the HTLCSource. If there is one, this
works great, we immediately generate a `ChannelMonitorUpdate` for
the corresponding inbound HTLC and persist that before we ever get
to processing our counterparty's `commitment_signed` and persisting
the corresponding `ChannelMonitorUpdate`.
However, if there isn't one (and this is the first successful HTLC
for a payment we sent), we immediately generate a `PaymentSent`
event and queue it up for the user. Then, a millisecond later, we
receive the `commitment_signed` from our peer, removing the HTLC
from the latest local commitment transaction as a side-effect of
the `ChannelMonitorUpdate` applied.
If the user has processed the `PaymentSent` event by that point,
great, we're done. However, if they have not, and we crash prior to
persisting the `ChannelManager`, on startup we get confused about
the state of the payment. We'll force-close the channel for being
stale, and see an HTLC which was removed and is no longer present
in the latest commitment transaction (which we're broadcasting).
Because we claim corresponding inbound HTLCs before updating a
`ChannelMonitor`, we assume such HTLCs have failed - attempting to
fail after having claimed should be a noop. However, in the
sent-payment case we now generate a `PaymentFailed` event for the
user, allowing an HTLC to complete without giving the user a
preimage.
Here we address this issue by storing the payment preimages for
claimed outbound HTLCs in the `ChannelMonitor`, in addition to the
existing inbound HTLC preimages already stored there. This allows
us to fix the specific issue described by checking for a preimage
and switching the type of event generated in response. In addition,
it reduces the risk of future confusion by ensuring we don't fail
HTLCs which were claimed but not fully committed to before a crash.
It does not, however, full fix the issue here - because the
preimages are removed after the HTLC has been fully removed from
available commitment transactions if we are substantially delayed
in persisting the `ChannelManager` from the time we receive the
`update_fulfill_htlc` until after a full commitment signed dance
completes we may still hit this issue. The full fix for this issue
is to delay the persistence of the `ChannelMonitorUpdate` until
after the `PaymentSent` event has been processed. This avoids the
issue entirely, ensuring we process the event before updating the
`ChannelMonitor`, the same as we ensure the upstream HTLC has been
claimed before updating the `ChannelMonitor` for forwarded
payments.
The full solution will be implemented in a later work, however this
change still makes sense at that point as well - if we were to
delay the initial `commitment_signed` `ChannelMonitorUpdate` util
after the `PaymentSent` event has been processed (which likely
requires a database update on the users' end), we'd hold our
`commitment_signed` + `revoke_and_ack` response for two DB writes
(i.e. `fsync()` calls), making our commitment transaction
processing a full `fsync` slower. By making this change first, we
can instead delay the `ChannelMonitorUpdate` from the
counterparty's final `revoke_and_ack` message until the event has
been processed, giving us a full network roundtrip to do so and
avoiding delaying our response as long as an `fsync` is faster than
a network roundtrip.
The `Channel::get_shutdown` docs are very clear - if the channel
jumps to `Shutdown` as a result of not being funded when we go to
initiate shutdown we should not generate a `ChannelMonitorUpdate`
as there's no need to bother with the shutdown script - we're
force-closing anyway.
However, this wasn't actually implemented, potentially causing a
spurious monitor update for no reason.
Building on the previous commits, this finishes our transition to
doing all message-sending in the monitor update completion
pipeline, unifying our immediate- and async- `ChannelMonitor`
update and persistence flows.
In the previous commit, we moved all our `ChannelMonitorUpdate`
pipelines to use a new async path via the
`handle_new_monitor_update` macro. This avoids having two message
sending pathways and simply sends messages in the "monitor update
completed" flow, which is shared between sync and async monitor
updates.
Here we reuse the new macro for handling `funding_signed` messages
when doing an initial `ChannelMonitor` persistence. This provides
a similar benefit, simplifying the code a trivial amount, but
importantly allows us to fully remove the original
`handle_monitor_update_res` macro.
We currently have two codepaths on most channel update functions -
most methods return a set of messages to send a peer iff the
`ChannelMonitorUpdate` succeeds, but if it does not we push the
messages back into the `Channel` and then pull them back out when
the `ChannelMonitorUpdate` completes and send them then. This adds
a substantial amount of complexity in very critical codepaths.
Instead, here we swap all our channel update codepaths to
immediately set the channel-update-required flag and only return a
`ChannelMonitorUpdate` to the `ChannelManager`. Internally in the
`Channel` we store a queue of `ChannelMonitorUpdate`s, which will
become critical in future work to surface pending
`ChannelMonitorUpdate`s to users at startup so they can complete.
This leaves some redundant work in `Channel` to be cleaned up
later. Specifically, we still generate the messages which we will
now ignore and regenerate later.
This commit updates the `ChannelMonitorUpdate` pipeline across all
the places we generate them.
The TODO mentioned in `handle_monitor_update_res` about how we
might forget about HTLCs in case of permanent monitor update
failure still applies in spite of all our changes. If a channel is
drop'd in general, monitor-pending updates may be lost if the
monitor update failed to persist.
This was always the case, and is ultimately the general form of the
the specific TODO, so we simply leave comments there
In order to support fully async `ChannelMonitor` updating, we need
to ensure that we can replay `ChannelMonitorUpdate`s if we shut
down after persisting a `ChannelManager` but without completing a
`ChannelMonitorUpdate` persistence. In order to support that we
(obviously) have to store the `ChannelMonitorUpdate`s in the
`ChannelManager`, which we do here inside the `Channel`.
We do so now because in the coming commits we will start using the
async persistence flow for all updates, and while we won't yet
support fully async monitor updating it's nice to get some of the
foundational structures in place now.
In the coming commits we'll move to async `ChannelMonitorUpdate`
application, which means we'll want to generate a
`ChannelMonitorUpdate` (including a new counterparty commitment
transaction) before we actually send it to our counterparty. To do
that today we'd have to actually sign the commitment transaction
by calling the signer, then drop it, apply the
`ChannelMonitorUpdate`, then re-sign the commitment transaction to
send it to our peer.
In this commit we instead split `send_commitment_no_status_check`
and `send_commitment_no_state_update` into `build_` and `send_`
variants, allowing us to generate new counterparty commitment
transactions without actually signing, then build them for sending,
with signatures, later.
Adds the macro `get_pubkey_from_node_id`
to parse `PublicKey`s back from `NodeId`s for signature
verification, as well as `make_funding_redeemscript_from_slices`
to avoid parsing back and forth between types.
Secrets should not be exposed in-memory at the interface level as it
would be impossible the implement it against a hardware security
module/secure element.
This is purely a refactor that does not change the InitFeatures
advertised by a ChannelManager. This allows users to configure which
features should be advertised based on the values of `UserConfig`. While
there aren't any existing features currently leveraging this behavior,
it will be used by the upcoming anchors_zero_fee_htlc_tx feature.
The UserConfig dependency on provided_init_features caused most
callsites of the main test methods responsible for opening channels to
be updated. This commit foregos that completely by no longer requiring
the InitFeatures of each side to be provided to these methods. The
methods already require a reference to each node's ChannelManager to
open the channel, so we use that same reference to obtain their
InitFeatures. A way to override such features was required for some
tests, so a new `override_init_features` config option now exists on
the test harness.