Add a new config flag `UserConfig::manually_accept_inbound_channels`,
which when set to true allows the node operator to accept or reject new
channel requests.
When set to true, `Event::OpenChannelRequest` will be triggered once a
request to open a new inbound channel is received. When accepting the
request, `ChannelManager::accept_inbound_channel` should be called.
Rejecting the request is done through
`ChannelManager::force_close_channel`.
`cargo bench` sets `cfg(test)`, causing us to hit some test-only
code in the router when benchmarking, throwing off our benchmarks
substantially. Here we swap from the `unstable` feature to a more
clearly internal feature (`_bench_unstable`) and also checking for
it when enabling test-only code.
We currently allow users to provide an `override_config` in
`ChannelManager::create_channel` which it seems should apply to the
channel. However, because we don't store any of it, the only parts
which we apply to the channel are those which are set in the
`Channel` object immediately in `Channel::new_outbound` and used
from there.
This is great in most cases, however the
`UserConfig::peer_channel_config_limits` `ChannelHandshakeLimits`
object is used in `accept_channel` to bound what is acceptable in
our peer's `AcceptChannel` message. Thus, for outbound channels, we
are given a full `UserConfig` object to "override" the default
config, but we don't use any of the handshake limits specified in
it.
Here, we move to storing the `ChannelHandshakeLimits` explicitly
and applying it when we receive our peer's `AcceptChannel`. Note
that we don't need to store it anywhere because if we haven't
received an `AcceptChannel` from our peer when we reload from disk
we will forget the channel entirely anyway.
The spec actually requires we never send `announcement_signatures`
(and, thus, `channel_announcement`s) until after six confirmations.
However, we would happily have sent them prior to that as long as
we exchange `funding_locked` messages with our countarparty. Thanks
to re-broadcasting this issue is largely harmless, however it could
have some negative interactions with less-robust peers. Much more
importantly, this represents an important step towards supporting
0-conf channels, where `funding_locked` messages may be exchanged
before we even have an SCID to construct the messages with.
Because there is no ACK mechanism for `announcement_signatures` we
rely on existing channel updates to stop rebroadcasting them - if
we sent a `commitment_signed` after an `announcement_signatures`
and later receive a `revoke_and_ack`, we know our counterparty also
received our `announcement_signatures`. This may resolve some rare
edge-cases where we send a `funding_locked` which our counterparty
receives, but lose connection before the `announcement_signatures`
(usually the very next message) arrives.
Sadly, because the set of places where an `announcement_signatures`
may now be generated more closely mirrors where `funding_locked`
messages may be generated, but they are now separate, there is a
substantial amount of code motion providing relevant parameters
about current block information and ensuring we can return new
`announcement_signatures` messages.
This removes one more place where we directly access the node_id
secret key in `ChannelManager`, slowly marching towards allowing
the node_id secret key to be offline in the signer.
More importantly, it allows more ChannelAnnouncement logic to move
into the `Channel` without having to pass the node secret key
around, avoiding the announcement logic being split across two
files.
Fix build errors
Create script using p2wsh for comparison
Using p2wpkh for generating the payment script
spendable_outputs sanity check
Return err in spendable_outputs
Doc updates in keysinterface
This resolves a lockorder inversion in
`ChannelManager::finalize_claims` where `pending_outbound_payments`
is locked after `pending_events`, opposite of, for example, the
lockorder in `ChannelManager::fail_htlc_backwards_internal` where
`pending_outbound_payments` is locked at the top of the
`HTLCSource::OutboundRoute` handling and then `pending_events` is
locked at the end.
and replace payment_secret with encrypted metadata
See docs on `inbound_payment::verify` for details
Also add min_value checks to all create_inbound_payment* methods
When a payment fails, a payer needs to know when they can consider
a payment as fully-failed, and when only some of the HTLCs in the
payment have failed. This isn't possible with the current event
scheme, as discovered recently and as described in the previous
commit.
This adds a new event which describes when a payment is fully and
irrevocably failed, generating it only after the payment has
expired or been marked as expired with
`ChannelManager::mark_retries_exceeded` *and* all HTLCs for it
have failed. With this, a payer can more simply deduce when a
payment has failed and use that to remove payment state or
finalize a payment failure.
When a payer gives up trying to retry a payment, they don't know
for sure what the current state of the event queue is.
Specifically, they cannot be sure that there are not multiple
additional `PaymentPathFailed` or even `PaymentSuccess` events
pending which they will see later. Thus, they have a very hard
time identifying whether a payment has truly failed (and informing
the UI of that fact) or if it is still pending. See [1] for more
information.
In order to avoid this mess, we will resolve it here by having the
payer give `ChannelManager` a bit more information - when they
have given up on a payment - and using that to generate a
`PaymentFailed` event when all paths have failed.
This commit adds the neccessary storage and changes for the new
state inside `ChannelManager` and a public method to mark a payment
as failed, the next few commits will add the new `Event` and use
the new features in our `PaymentRetrier`.
[1] https://github.com/lightningdevkit/rust-lightning/issues/1164
During event handling, ChannelManager methods may need to be called as
indicated in the Event documentation. Ensure that these calls are
idempotent for the same event rather than panicking. This allows users
to persist events for later handling without needing to worry about
processing the same event twice (e.g., if ChannelManager is not
persisted but the events were, the restarted ChannelManager would return
some of the same events).
A peer providing a channel_reserve_satoshis of 0 (or less than our
dust limit) is insecure, but only for them. Because some LSPs do it
with some level of trust of the clients (for a substantial UX
improvement), we explicitly allow it. Because its unlikely to
happen often in normal testing, we test it explicitly here.
A single PaymentSent event is generated when a payment is fulfilled.
This is occurs when the preimage is revealed on the first claimed HTLC.
For subsequent HTLCs, the event is not generated.
In order to score channels involved with a successful payments, the
scorer must be notified of each successful path involved in the payment.
Add a PaymentPathSuccessful event for this purpose. Generate it whenever
a part is removed from a pending outbound payment. This avoids duplicate
events when reconnecting to a peer.
In upcoming commits, we'll be making the payment secret and payment hash/preimage
derivable from info about the payment + a node secret. This means we don't
need to store any info about incoming payments and can eventually get rid of the
channelmanager::pending_inbound_payments map.
Traits in top-level modules is somewhat confusing - generally
top-level modules are just organizational modules and don't contain
things themselves, instead placing traits and structs in
sub-modules. Further, its incredibly awkward to have a `scorer`
sub-module, but only have a single struct in it, with the relevant
trait it is the only implementation of somewhere else. Not having
`Score` in the `scorer` sub-module is further confusing because
it's the only module anywhere that references scoring at all.
We currently assume our counterparty is naive and misconfigured and
may force-close a channel to get an HTLC we just forwarded them.
There shouldn't be any reason to do this - we don't have any such
bug, and we shouldn't start by assuming our counterparties are
buggy. Worse, this results in refusing to forward payments today,
failing HTLCs for largely no reason.
Instead, we keep a fairly conservative check, but not one which
will fail HTLC forwarding spuriously - testing only that the HTLC
doesn't expire for a few blocks from now.
Fixes#1114.