RouteNotFound did not fit here because that error is reserved for failing to
find a route for a payment, whereas here we are failing to create a blinded
path back to ourselves..
TlvRecord has a few fields, but comparing only the record_bytes is
sufficient for equality since the other fields are initialized from it.
Remove the Eq and PartialEq derives as they compare these other fields.
Using the tlv_stream macro without a type needing a reference results in
a compilation error because of an unused lifetime parameter. To avoid
this, add an optional lifetime parameter to the macro. This allows for
experimental TLVs, which will be empty initially, and TLVs of entirely
primitive types.
When we first get a public channel confirmed at six blocks, we
broadcast a `channel_announcement` once and then move on. As long
as it makes it into our local network graph that should be okay, as
we should send peers our network graph contents as they seek to
sync, however its possible an ill-timed shutdown could cause this
to fail, and relying on peers to do a full historical sync from us
may delay `channel_announcement` propagation.
Instead, here, we re-broadcast our `channel_announcement`s every
six blocks for a week, which should be way more than robust enough
to get them properly across the P2P network.
Fixes#2418
Split Bolt11InvoiceDescription into a version used with references to
the description or description hash in the invoice and an owned version
of these for when constructing an invoice. The latter is useful as it
removes an unnecessary clone and can be used in a future change
specifying either a description or description hash in larger set of
invoice parameters. Since it doesn't use a reference, it can be exposed
in bindings as well.
Because the new startup `ChannelMonitor` persistence semantics rely
on new information stored in `ChannelMonitor` only for claims made
in the upgraded code, users upgrading from previous version of LDK
must apply the old `ChannelMonitor` persistence semantics at least
once (as the old code will be used to handle partial claims).
When we discover we've only partially claimed an MPP HTLC during
`ChannelManager` reading, we need to add the payment preimage to
all other `ChannelMonitor`s that were a part of the payment.
We previously did this with a direct call on the `ChannelMonitor`,
requiring users write the full `ChannelMonitor` to disk to ensure
that updated information made it.
This adds quite a bit of delay during initial startup - fully
resilvering each `ChannelMonitor` just to handle this one case is
incredibly excessive.
Over the past few commits we dropped the need to pass HTLCs
directly to the `ChannelMonitor`s using the background events to
provide `ChannelMonitorUpdate`s insetad.
Thus, here we finally drop the requirement to resilver
`ChannelMonitor`s on startup.
When we claim an MPP payment, then crash before persisting all the
relevant `ChannelMonitor`s, we rely on the payment data being
available in the `ChannelManager` on restart to re-claim any parts
that haven't yet been claimed. This is fine as long as the
`ChannelManager` was persisted before the `PaymentClaimable` event
was processed, which is generally the case in our
`lightning-background-processor`, but may not be in other cases or
in a somewhat rare race.
In order to fix this, we need to track where all the MPP parts of
a payment are in the `ChannelMonitor`, allowing us to re-claim any
missing pieces without reference to any `ChannelManager` data.
Further, in order to properly generate a `PaymentClaimed` event
against the re-started claim, we have to store various payment
metadata with the HTLC list as well.
Here we finally implement claiming using the new MPP part list and
metadata stored in `ChannelMonitor`s. In doing so, we use much more
of the existing HTLC-claiming pipeline in `ChannelManager`,
utilizing the on-startup background events flow as well as properly
re-applying the RAA-blockers to ensure preimages cannot be lost.
In the next commit we'll start using (much of) the normal HTLC
claim pipeline to replay payment claims on startup. In order to do
so, however, we have to properly handle cases where we get a
`DuplicateClaim` back from the channel for an inbound-payment HTLC.
Here we do so, handling the `MonitorUpdateCompletionAction` and
allowing an already-completed RAA blocker.
Here we wrap the logic which moves claimable payments from
`claimable_payments` to `pending_claiming_payments` to a new
utility function on `ClaimablePayments`. This will allow us to call
this new logic during `ChannelManager` deserialization in a few
commits.
In a coming commit we'll use the existing `ChannelManager` claim
flow to claim HTLCs which we found partially claimed on startup,
necessitating having a full `ChannelManager` when we go to do so.
Here we move the re-claim logic down in the `ChannelManager`-read
logic so that we have that.
When we claim an MPP payment, then crash before persisting all the
relevant `ChannelMonitor`s, we rely on the payment data being
available in the `ChannelManager` on restart to re-claim any parts
that haven't yet been claimed. This is fine as long as the
`ChannelManager` was persisted before the `PaymentClaimable` event
was processed, which is generally the case in our
`lightning-background-processor`, but may not be in other cases or
in a somewhat rare race.
In order to fix this, we need to track where all the MPP parts of
a payment are in the `ChannelMonitor`, allowing us to re-claim any
missing pieces without reference to any `ChannelManager` data.
Further, in order to properly generate a `PaymentClaimed` event
against the re-started claim, we have to store various payment
metadata with the HTLC list as well.
Here we store the required MPP parts and metadata in
`ChannelMonitor`s and make them available to `ChannelManager` on
load.
When we claim an MPP payment, then crash before persisting all the
relevant `ChannelMonitor`s, we rely on the payment data being
available in the `ChannelManager` on restart to re-claim any parts
that haven't yet been claimed. This is fine as long as the
`ChannelManager` was persisted before the `PaymentClaimable` event
was processed, which is generally the case in our
`lightning-background-processor`, but may not be in other cases or
in a somewhat rare race.
In order to fix this, we need to track where all the MPP parts of
a payment are in the `ChannelMonitor`, allowing us to re-claim any
missing pieces without reference to any `ChannelManager` data.
Further, in order to properly generate a `PaymentClaimed` event
against the re-started claim, we have to store various payment
metadata with the HTLC list as well.
Here we take the first step, building a list of MPP parts and
metadata in `ChannelManager` and passing it through to
`ChannelMonitor` in the `ChannelMonitorUpdate`s.
When we started tracking which channels had MPP parts claimed
durably on-disk in their `ChannelMonitor`, we did so with a tuple.
This was fine in that it was only ever accessed in two places, but
as we will start tracking it through to the `ChannelMonitor`s
themselves in the coming commit(s), it is useful to have it in a
struct instead.
In aa09c33a17 we added a new secret
in `ChannelManager` with which to derive inbound `PaymentId`s. We
added read support for the new field, but forgot to add writing
support for it. Here we fix this oversight.
`or_default` is generally less readable than writing out the thing
we're writing, as `Default` is opaque but explicit constructors
generally are not. Thus, we ignore the clippy lint (ideally we
could invert it and ban the use of `Default` in the crate entirely
but alas).
These structs are meant for MonitoringUpdatingPersister implementation, but some
external implementations may still reuse them, so going to make them public.
There is a decent amount of shared code in these two methods so we make
an attempt to share that code here by introducing the
`InitialRemoteCommitmentReceiver` trait. This trait will also come in
handy when we need similar commitment_signed handling behaviour for
dual-funded channels.
Rename parameters used when calculating success probability to make it
clear that the total mount in-flight should be used rather than the
payment amount.
Commit df52da7b31 modified
ProbabilisticScorer to apply some penalty amount multipliers to the
total amount flowing over the channel. However, the commit updated the
docs for base_penalty_amount_multiplier_msat even though that behavior
didn't change. This commit reverts those docs.
Commit df52da7b31 modified
ProbabilisticScorer to apply some penalty amount multipliers (e.g.,
liquidity_penalty_amount_multiplier_msat) to the total amount flowing
over the channel (i.e., including inflight HTLCs), not just the payment
in question. This led to over-penalizing in-use channels. Instead, only
apply the total amount when calculating success probability.