https://github.com/tkaitchuck/aHash/pull/196 bumped the MSRV of
`ahash` in a patch release, which makes it rather difficult for us
to have it as a dependency.
Further, it seems that `ahash` hasn't been particularly robust in
the past, notably
https://github.com/tkaitchuck/aHash/issues/163 and
https://github.com/tkaitchuck/aHash/issues/166.
Luckily, `core` provides `SipHasher` even on no-std (sadly its
SipHash-2-4 unlike the SipHash-1-3 used by the `DefaultHasher` in
`std`). Thus, we drop the `ahash` dependency entirely here and
simply wrap `SipHasher` for our `no-std` HashMaps.
While this isn't expected to materially improve performance, it
does get us ahash 0.8, which allows us to reduce fuzzing
randomness, making our fuzzers much happier.
Sadly, by default `ahash` no longer tries to autodetect a
randomness source, so we cannot simply rely on `hashbrown` to do
randomization for us, but rather have to also explicitly depend on
`ahash`.
In the next commit we'll bump the `hashbrown` version, which no
longer randomizes its hasher by default. Thus, we'll need to call
a different constructor in no-std builds from std builds.
Here we do a quick prefactor to use wrappers for `FromIterator`
constructors instead of calling the tables directly to make the
version bump changeset smaller.
In the next commit we'll bump the `hashbrown` version, which no
longer randomizes its hasher by default. Thus, we'll need to call
a different constructor in no-std builds from std builds.
Here we do a quick prefactor to use wrappers for constructors
instead of calling the tables directly to make the version bump
changeset smaller.
As we'd generally like the `lightning` crate to, over time, have
more modules rather than being very monolithic, we should move the
cryptographic things into their own module, which we do here.
We also take this opportunity to move stream adapters into their
own module and make clear that the ChaChaPoly `decrypt` method is
variable time.
In the next commits we'll need `f64`'s `powf`, which is only
available in `std`. For `no-std`, here we depend on `libm` (a
`rust-lang` org project), which we can use for `powf`.
Downstream crates building fur fuzzing will usually set
`--cfg=fuzzing` as a side-effect of the Rust fuzzing tooling. Thus,
we should ensure we build without failure in such cases.
We do this here by simply relying on the `_test_utils` feature,
rather than conditionally-compiling in modules based on the
`fuzzing` flag.
Rather than using the std benchmark framework (which isn't
maintained and is unlikely to get any further maintenance), we swap
for criterion, which at least gets us a variable number of test
runs so our benchmarks don't take forever.
We also fix the RGS benchmark to pass now that the file in use is
stale compared to today's date.
This is largely motivated by some follow-up work for anchors that will
introduce an event handler for `BumpTransaction` events, which we can
now include in this new top-level `events` module.
Define an interface for BOLT 12 `offer` messages. The underlying format
consists of the original bytes and the parsed contents.
The bytes are later needed when constructing an `invoice_request`
message. This is because it must mirror all the `offer` TLV records,
including unknown ones, which aren't represented in the contents.
The contents will be used in `invoice_request` messages to avoid
duplication. Some fields while required in a typical user-pays-merchant
flow may not be necessary in the merchant-pays-user flow (i.e., refund).
`cargo bench` sets `#[cfg(test)]` so our current checks for
enabling our lockorder debugging end up matching when we're trying
to build performance benchmarks.
This adds explicit checks to our debug_lockorder logic to filter
out `feature = "_bench_unstable"` builds.
Also update the fuzz ChaCha20Poly1305 to not mark as finished after a single
encrypt_in_place. This is because more bytes may still need to be encrypted,
causing us to panic at the assertion that finished == false when we go to
encrypt more.
Also fix unused_mut warning in messenger + add log on OM forward for testing
Blinded routes can be provided as destinations for onion messages, when the
recipient prefers to remain anonymous.
We also add supporting utilities for constructing blinded path keys, and
control TLVs structs representing blinded payloads prior to being
encoded/encrypted. These utilities and struct will be re-used in upcoming
commits for sending and receiving/forwarding onion messages.
Finally, add utilities for reading the padding from an onion message's
encrypted TLVs without an intermediate Vec.
This is useful in bindings as the `lightning::io` module is used in
the public interface, but also useful for users who want to refer
to the `io` as used in lightning irrespective of the feature flags.
Because we handle messages (which can take some time, persisting
things to disk or validating cryptographic signatures) with the
top-level read lock, but require the top-level write lock to
connect new peers or handle disconnection, we are particularly
sensitive to writer starvation issues.
Rust's libstd RwLock does not provide any fairness guarantees,
using whatever the OS provides as-is. On Linux, pthreads defaults
to starving writers, which Rust's RwLock exposes to us (without
any configurability).
Here we work around that issue by blocking readers if there are
pending writers, optimizing for readable code over
perfectly-optimized blocking.
`cargo bench` sets `cfg(test)`, causing us to hit some test-only
code in the router when benchmarking, throwing off our benchmarks
substantially. Here we swap from the `unstable` feature to a more
clearly internal feature (`_bench_unstable`) and also checking for
it when enabling test-only code.
Sadly rust upstream never really figured out the benchmark story,
and it looks like the API we use here may not be long for this
world. Luckily, we can switch to criterion with largely the same
API if that happens before upstream finishes ongoing work with the
custom test framework stuff.
Sadly, it requires fetching the current network graph, which I did
using Val's route-testing script written to test the MPP router.
This changes the LICENSE file and adds license headers to most files
to relicense under dual Apache-2.0 and MIT. This is helpful in that
we retain the patent grant issued under Apache-2.0-licensed work,
avoiding some sticky patent issues, while still allowing users who
are more comfortable with the simpler MIT license to use that.
See https://github.com/rust-bitcoin/rust-lightning/issues/659 for
relicensing statements from code authors.