Currently we entirely ignore the BADONION bit when deciding how to
handle HTLC failures. This opens us up to an attack where a
malicious node always fails HTLCs backwards via
`update_fail_malformed_htlc` with an error code of
`BADONION|NODE|PERM|X`. In this case, we may decide to interpret
this as a permanent node failure for the node encrypting the onion,
i.e. the counterparty of the node who sent the
`update_fail_malformed_htlc` message and ultimately failed the
HTLC.
Thus, any node we route through could cause us to fully remove its
counterparty from our network graph. Luckily we do not do any
persistent tracking of removed nodes, and thus will re-add the
removed node once it is re-announced or on restart, however we are
likely to add such persistent tracking (at least in-memory) in the
future.
We've seen a bit of user confusion about the requirements for event
handling, largely because the idempotency and consistency
requirements weren't super clearly phrased. While we're at it, we
also consolidate some documentation out of the event handling
function onto the trait itself.
Fixes#1675.
Previously, we wouldn't mark a dust HTLC as permanently resolved if
the commitment transaction went on chain. This resulted in us
always considering the HTLC as pending on restart, when we load the
pending payments set from the monitors.
Fixes#1653.
If we receive a channel_update for one of our private channels, we
will not log the message at the usual TRACE log level as the
message falls into the gossip range. However, for our own channels
they aren't *just* gossip, as we store that info and it changes
how we generate invoices. Thus, we add a log in `ChannelManager`
here at the DEBUG log level.
This allows users who don't wish to block a full thread to receive
persistence events.
The `Future` added here is really just a trivial list of callbacks,
but from that we can build a (somewhat ineffecient)
std::future::Future implementation and can (at least once a mapping
for Box<dyn Trait> is added) include the future in no-std bindings
as well.
Fixes#1595
In this commit, we check if a peer's outbound buffer has room for onion
messages, and if so pulls them from an implementer of a new trait,
OnionMessageProvider.
Makes sure channel messages are prioritized over OMs, and OMs are prioritized
over gossip.
The onion_message module remains private until further rate limiting is added.
Adds the boilerplate needed for PeerManager and OnionMessenger to work
together, with some corresponding docs and misc updates mostly due to the
PeerManager public API changing.
This allows us to better prioritize channel messages over gossip broadcasts and
lays groundwork for rate limiting onion messages more simply, since they won't
be competing with gossip broadcasts for space in the main message queue.
If we don't currently have the preimage for an inbound HTLC, that
does not guarantee we can never claim it, but instead only that we
cannot claim it unless we receive the preimage from the channel we
forwarded the channel out on.
Thus, we cannot consider a channel to have no claimable balances if
the only remaining output on the commitment ransaction is an
inbound HTLC for which we do not have the preimage, as we may be
able to claim it in the future.
This commit addresses this issue by adding a new `Balance` variant
- `MaybePreimageClaimableHTLCAwaitingTimeout`, which is generated
until the HTLC output is spent.
Fixes#1620
This uses the various new tracking added in the prior commits to
expose a new `Balance` type - `CounterpartyRevokedOutputClaimable`.
Some nontrivial work is required, however, as we now have to track
HTLC outputs as spendable in a transaction that comes *after* an
HTLC-Success/HTLC-Timeout transaction, which we previously didn't
need to do. Thus, we have to check if an
`onchain_events_awaiting_threshold_conf` event spends a commitment
transaction's HTLC output while walking events. Further, because
we now need to track HTLC outputs after the
HTLC-Success/HTLC-Timeout confirms, and because we have to track
the counterparty's `to_self` output as a contentious output which
could be claimed by either party, we have to examine the
`OnchainTxHandler`'s set of outputs to spend when determining if
certain outputs are still spendable.
Two new tests are added which test various different transaction
formats, and hopefully provide good test coverage of the various
revoked output paths.
The test intended to disconnect a transaction previously connected
but didn't disconnect enough blocks to do so, leading to it
confirming two conflicting transactions.
In the next few commits this will become an assertion failure.
Instead of backfilling gossip by buffering (up to) ten messages at
a time, only buffer one message at a time, as the peers' outbound
socket buffer drains. This moves the outbound backfill messages out
of `PeerHandler` and into the operating system buffer, where it
arguably belongs.
Not buffering causes us to walk the gossip B-Trees somewhat more
often, but avoids allocating vecs for the responses. While its
probably (without having benchmarked it) a net performance loss, it
simplifies buffer tracking and leaves us with more room to play
with the buffer sizing constants as we add onion message forwarding
which is an important win.
Note that because we change how often we check if we're out of
messages to send before pinging, we slightly change how many
messages are exchanged at once, impacting the
`test_do_attempt_write_data` constants.
Prior to this change, we could have failed to decode a valid payload of size
>253. This is because we were decoding the length (a BigSize, big-endian) as a
VarInt (little-endian).
Found in #1652.
This consolidates our various checks on peer buffer space into the
`Peer` impl itself, making the thresholds at which we stop taking
various actions on a peer more readable as a whole.
This commit was primarily authored by `Valentine Wallace
<vwallace@protonmail.com>` with some amendments by `Matt Corallo
<git@bluematt.me>`.
It was always somewhat strange to have a bunch of notification
logic in `channelmanager`, and with the next commit adding a bunch
more, its moved here first.
Pre-existing to this PR, we were reading next packet bytes with io::Read::read,
which is not guaranteed to read all the bytes we need, only guaranteed to read
*some* bytes.
We fix this to be read_exact, which is guaranteed to read all the next hop
packet bytes.
This required adapting `onion_utils::decode_next_hop` to work for both payments
and onion messages.
Currently we just print out the path_id of any onion messages we receive. In
the future, these received onion messages will be redirected to their
respective handlers: i.e. an invoice_request will go to an InvoiceHandler,
custom onion messages will go to a custom handler, etc.
This adds several utilities in service of then adding
OnionMessenger::send_onion_message, which can send to either an unblinded
pubkey or a blinded route. Sending custom TLVs and sending an onion message
containing a reply path are not yet supported.
We also need to split the construct_keys_callback macro into two macros to
avoid an unused assignment warning.
This method will help us avoid retrieving our node secret, something we want to
get rid of entirely. It will be used in upcoming commits when decoding the
onion message packet, and in future PRs to help us get rid of
KeysInterface::get_node_secret usages across the codebase
We need to add a new Packet struct because onion message packet hop_data fields
can be of variable length, whereas regular payment packets are always 1366
bytes.
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
Co-authored-by: Jeffrey Czyz <jkczyz@gmail.com>
It is proportion of the channel value to configure as the
`their_channel_reserve_satoshis` for both outbound and inbound channels.
It decides the minimum balance that the other node has to maintain on their
side, at all times.
Currently `decode_update_add_htlc_onion` returns the `channel_state`
lock to ensure that `internal_update_add_htlc` holds a single
`channel_state` lock in when the entire function execution. This is
unnecessary, and since we are moving the channel storage to the
`per_peer_state`, this no longer achieves the goal it was intended for.
We therefore avoid returning the `channel_state` from
`decode_update_add_htlc_onion`, and just retake the lock in
`internal_update_add_htlc` instead.
Blinded routes can be provided as destinations for onion messages, when the
recipient prefers to remain anonymous.
We also add supporting utilities for constructing blinded path keys, and
control TLVs structs representing blinded payloads prior to being
encoded/encrypted. These utilities and struct will be re-used in upcoming
commits for sending and receiving/forwarding onion messages.
Finally, add utilities for reading the padding from an onion message's
encrypted TLVs without an intermediate Vec.