Lightning OutPoints only have 16 bits to express the output index
instead of Bitcoin's 32 bits, implying that some outputs are
possibly not expressible as lightning OutPoints. However, such
OutPoints can never be hit within the lightning protocol, and must
be on-chain spam sent by a third party wishing to donate us money.
Still, in order to do so, the third party would need to fill nearly
an entire block with garbage, so this case should be relatively
safe.
A new comment in channelmonitor explains the reasoning a bit
further.
Instead of using the explicit type which is being returned, refer
to them as Self::AssociatedType, to make clear to the bindings what
type of thing is being returned.
Due to a desire to be able to override temporary channel IDs and
onion keys, KeysInterface had two separate fetch-random-32-bytes
interfaces - an onion-key specific version which fetched 2 random
32 byte strings and a temporary-channel-id specific version.
It turns out, we never actually need to override both at once (as
creating a new channel and sending an outbound payment are always
separate top-level calls), so there's no reason to add two
functions to the interface when both really do the same thing.
This changes the LICENSE file and adds license headers to most files
to relicense under dual Apache-2.0 and MIT. This is helpful in that
we retain the patent grant issued under Apache-2.0-licensed work,
avoiding some sticky patent issues, while still allowing users who
are more comfortable with the simpler MIT license to use that.
See https://github.com/rust-bitcoin/rust-lightning/issues/659 for
relicensing statements from code authors.
Allows calling of InMemoryChannelKeys methods.
The wrapping makes it obvious to signer implementers that the pre-derived keys are a local cache and should not be trusted in a validating signer.
The commitment secret is sensitive - it can be used by an attacker to
steal funds if the node also signs the same transaction. Therefore,
only release the secret from ChannelKeys when we are revoking a
transaction.
We use them largely as indexes into a Vec<Transaction> so there's
little reason for them to be u32s. Instead, use them as usize
everywhere.
We also take this opportunity to add range checks before
short_channel_id calculation, as we could otherwise end up with a
bogus short_channel_id due to an output index out of range.
Instead of making the filter_block fn in the ChainWatchInterface
trait return both a list of indexes of transaction positions within
the block and references to the transactions themselves, return
only the list of indexes and then build the reference list at the
callsite.
While this may be slightly less effecient from a memory locality
perspective, it shouldn't be materially different.
This should make it more practical to generate bindings for
filter_block as it no longer needs to reference Rust Transaction
objects that are contained in a Rust Block object (which we'd
otherwise just pass over the FFI in fully-serialized form).
In general, we don't need an explicit lifetime when doing something
like:
fn get_thing(&self) -> &Thing { &self.thing }.
This also makes it easier to reason about what's going on in the
bindings generation.
As we drop the requirement that all ChannelKeys expose the private
keys used, we should have a way to access the private keys in use
when using InMemoryChannelKeys.
Instead of blindly signing provided witnessScript, signer must derive
channel keys corresponding to the provided per-commitment-point and
regenerate templated witnessScript to ensure its syntax correctness.
Instead of blindly signing provided witnessScript, signer must derive
channel keys corresponding to the provided per-commitment-point and
regenerate templated witnessScript to ensure its syntax correctness.
Dry-up remote pubkeys tracking in one struct.
This introduce a duplicate of RemoteTxCache, which is going
to be removed in next commit when OnchainTxHandler version is
removed.
Add sign_payment_transaction in ChanSigner to be able to spend
SpendableOutputDescriptor in test framework
Extend ChannelKeys with remote_pubkeys to access remote revocation
basepoint for witnessScript construction.
A dynamic-p2wsh-output like `to_local` on local commitment/HTLC txn
require a signature from delayed_payment_key to be spend. Instead of
sending private key in descriptor, we ask for spender to derive again
the corresponding ChannelKeys based on key state, uniquely identifying
a channel and encompassing its unique start data.
Descriptor modification is done in next commit.
* Return Self instead of the fully-written types for constructors,
* Place definitions before use (in this case for KeysInterface),
* Don't import foo::bar::self, but import foo::bar
+ a spelling fix in the KeysInterface docs for get_onion_rand.
In next commit, we add derive_channel_keys, a helper to rederive
keys from a SpendableOuptutDescriptor. We still need to ensure
that user rederive same set of keys even if KeyManager is started
at a later time. For doing so we need to pass starting time as
part of the re-derived sha_state, therefore we need to make it
accessible and part of channel state key material.
Seed is already required to be conserved between KeysManager
serializations.
This makes it easier for our automated bindings generator to
function as it tries to automatically create a ::new if the struct
contains only pub elements who's type is convertible.
This caused a bunch of cascading changes, including
passing loggers down to Channels in function calls
rather than having each Channel have a pointer to the
ChannelManager's Logger (which was a circular reference).
Other structs that the Channel had passed its Logger to also
had their loggers removed. Other newly unused Loggers were
also removed, especially when keeping them would've caused
a bunch of extra test changes to be necessary, e.g. with
the ChainWatchInterfaceUtil's Logger.
This simplifies channelmonitor quite nicely (as expected) as we
never have to be concerned with learning data in a DataLossProtect
which is require for us to claim our funds from the latest remote
commitment transaction.
1107ab06c3 introduced an API to have a
ChannelKeys implementer sign HTLC transactions by calling into the
LocalCommitmentTransaction object, which would then store the tx.
This API was incredibly awkward, both because it required an
external signer trust our own internal interfaces, but also because
it didn't allow for any inspection of what was about to be signed.
Further, it signed the HTLC transactions one-by-one in a somewhat
inefficient way, and there isn't a clear way to resolve this (as
the which-HTLC parameter has to refer to something in between the
HTLC's arbitrary index, and its index in the commitment tx, which
has "holes" for the non-HTLC outputs and skips some HTLCs).
We replace it with a new function in ChannelKeys which allows us
to sign all HTLCs in a given commitment transaction (which allows
for a bit more effeciency on the signers' part, as well as
sidesteps the which-HTLC issue). This may also simplify the signer
implementation as we will always want to sign all HTLCs spending a
given commitment transaction at once anyway.
We also de-mut the LocalCommitmentTransaction passed to the
ChanKeys, instead opting to make LocalCommitmentTransaction const
and avoid storing any new HTLC-related data in it.
This cleans up sign_local_commitment somewhat by returning a
Result<Signaure, ()> over the local commitment transaction instead
of modifying the struct which was passed in.
This is the first step in making LocalCommitmentTransaction a
completely pub struct, using it just to communicate enough
information to the user to allow them to construct a signaure
instead of having it contain a bunch of logic.
This should make it much easier to implement a custom ChannelKeys
by disconnecting the local commitment transaction signing from our
own datastructures.