When ChannelMessageHandler implementations wish to return a NodeFeatures which
contain all the known flags that are relevant to channel handling, but not
gossip handling, they currently need to do so by manually constructing a
NodeFeatures with all known flags and then clearing the ones they don't want.
Instead of spreading this logic across the codebase, this consolidates such
construction into one place in features.rs.
When we broadcast a node announcement, the features we support are really a
combination of all the various features our different handlers support. This
commit captures this concept by OR'ing our NodeFeatures across both our channel
and routing message handlers.
When `ChannelMessageHandler` implementations wish to return an
`InitFeatures` which contain all the known flags that are relevant
to channel handling, but not gossip handling, they currently need
to do so by manually constructing an InitFeatures with all known
flags and then clearing the ones they dont want.
Instead of spreading this logic out across the codebase, this
consolidates such construction to one place in features.rs.
When we go to send an Init message to new peers, the features we
support are really a combination of all the various features our
different handlers support. This commit captures this concept by
OR'ing our InitFeatures across both our Channel and Routing
handlers.
Note that this also disables setting the `initial_routing_sync`
flag in init messages, as was intended in
e742894492, per the comment added on
`clear_initial_routing_sync`, though this should not be a behavior
change in practice as nodes which support gossip queries ignore the
initial routing sync flag.
Like we now do for `NodeFeatures`, this converts to asking our
registered `ChannelMessageHandler` for our `InitFeatures` instead
of hard-coding them to the global LDK known set.
This allows handlers to set different feature bits based on what
our configuration actually supports rather than what LDK supports
in aggregate.
Some `NodeFeatures` will, in the future, represent features which
are not enabled by the `ChannelManager`, but by other message
handlers handlers. Thus, it doesn't make sense to determine the
node feature bits in the `ChannelManager`.
The simplest fix for this is to change to generating the
node_announcement in `PeerManager`, asking all the connected
handlers which feature bits they support and simply OR'ing them
together. While this may not be sufficient in the future as it
doesn't consider feature bit dependencies, support for those could
be handled at the feature level in the future.
This commit moves the `broadcast_node_announcement` function to
`PeerHandler` but does not yet implement feature OR'ing.
When we connect to a new peer, immediately send them any
channel_announcement and channel_update messages for any public
channels we have with other peers. This allows us to stop sending
those messages on a timer when they have not changed and ensures
we are sending messages when we have peers connected, rather than
broadcasting at startup when we have no peers connected.
17e6c374c5 added the
`HTLCHandlingFailed` event, including serialization thereof,
however failed to add corresponding deserialization. This corrects
that oversight by adding said deserialization.
Thanks to @wpaulino for catching the oversight.
The `rejected_by_dest` field of the `PaymentPathFailed` event has
always been a bit of a misnomer, as its really more about retry
than where a payment failed. Now is as good a time as any to
rename it.
We've seen a bit of user confusion about the requirements for event
handling, largely because the idempotency and consistency
requirements weren't super clearly phrased. While we're at it, we
also consolidate some documentation out of the event handling
function onto the trait itself.
Fixes#1675.
This allows users who don't wish to block a full thread to receive
persistence events.
The `Future` added here is really just a trivial list of callbacks,
but from that we can build a (somewhat ineffecient)
std::future::Future implementation and can (at least once a mapping
for Box<dyn Trait> is added) include the future in no-std bindings
as well.
Fixes#1595
We've had some users complain that `duration_since` is panic'ing
for them. This is possible if the machine being run on is buggy and
the "monotonic clock" goes backwards, which sadly some ancient
systems can do.
Rust addressed this issue in 1.60 by forcing
`Instant::duration_since` to not panic if the machine is buggy
(and time goes backwards), but for users on older rust versions we
do the same by hand here.
Adds the boilerplate needed for PeerManager and OnionMessenger to work
together, with some corresponding docs and misc updates mostly due to the
PeerManager public API changing.
Previously, only `log_error` and `log_trace` macros have been exported.
This change exports the macros of all log levels, which enables them to
be used downstream.
Also update the fuzz ChaCha20Poly1305 to not mark as finished after a single
encrypt_in_place. This is because more bytes may still need to be encrypted,
causing us to panic at the assertion that finished == false when we go to
encrypt more.
Also fix unused_mut warning in messenger + add log on OM forward for testing
Instead of backfilling gossip by buffering (up to) ten messages at
a time, only buffer one message at a time, as the peers' outbound
socket buffer drains. This moves the outbound backfill messages out
of `PeerHandler` and into the operating system buffer, where it
arguably belongs.
Not buffering causes us to walk the gossip B-Trees somewhat more
often, but avoids allocating vecs for the responses. While its
probably (without having benchmarked it) a net performance loss, it
simplifies buffer tracking and leaves us with more room to play
with the buffer sizing constants as we add onion message forwarding
which is an important win.
Note that because we change how often we check if we're out of
messages to send before pinging, we slightly change how many
messages are exchanged at once, impacting the
`test_do_attempt_write_data` constants.
This commit removes the return value from `Filter::register_output` as
creating a suitable value almost always entails blocking operations
(e.g., lookups via network request), which however conflicts with the
requirement that user calls should avoid blocking calls at all cost.
Removing the return value also rendered quite a bit of test code for
dependent transaction handling superfluous, which is therefore also
removed with this commit.
It was always somewhat strange to have a bunch of notification
logic in `channelmanager`, and with the next commit adding a bunch
more, its moved here first.
This method will help us avoid retrieving our node secret, something we want to
get rid of entirely. It will be used in upcoming commits when decoding the
onion message packet, and in future PRs to help us get rid of
KeysInterface::get_node_secret usages across the codebase
We need to add a new Packet struct because onion message packet hop_data fields
can be of variable length, whereas regular payment packets are always 1366
bytes.
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
Co-authored-by: Jeffrey Czyz <jkczyz@gmail.com>
It is proportion of the channel value to configure as the
`their_channel_reserve_satoshis` for both outbound and inbound channels.
It decides the minimum balance that the other node has to maintain on their
side, at all times.
Adds a HTLCHandlingFailed that expresses failure by our node to process
a specific HTLC. A HTLCDestination enum is defined to express the
possible cases that causes the handling to fail.
When we send payment probes, we generate the [`PaymentHash`] based on a
probing cookie secret and a random [`PaymentId`]. This allows us to
discern probes from real payments, without keeping additional state.
This fixes an insta-panic in `ChannelMonitor` deserialization where
we always `unwrap` a previous value to determine the default value
of a later field. However, because we always ran the `unwrap`
before the previous field is read, we'd always panic.
The fix is rather simple - use a `OptionDeserWrapper` for
`default_value` fields and only fill in the default value if no
value was read while walking the TLV stream.
The only complexity comes from our desire to support
`read_tlv_field` calls that use an explicit field rather than an
`Option` of some sort, which requires some statement which can
assign both an `OptionDeserWrapper<T>` variable and a `T` variable.
We settle on `x = t.into()` and implement `From<T> for
OptionDeserWrapper<T>` which works, though it requires users to
specify types explicitly due to Rust determining expression types
prior to macro execution, completely guessing with no knowlege for
integer expressions (see
https://github.com/rust-lang/rust/issues/91369).