As the `short_to_chan_info` has been moved out of the `channel_state` to
a standalone lock, several macros no longer need the `channel_state`
passed into the macro.
We rename `ChannelState::ChannelFunded` to `ChannelState::ChannelReady`
as we'll be in this state when both sides sent the `ChannelReady`
messages, which may also be before funding in the 0conf case.
These claims will never be valid as a previous claim has already
confirmed. If a previous claim is reorged out of the chain, a new claim
will be generated bypassing the new behavior.
While this doesn't change much for our existing transaction-based
claims, as broadcasting an already confirmed transaction acts as a NOP,
it prevents us from yielding redundant event-based claims, which will be
introduced as part of the anchors patchset.
When the `abandon_payment` flow was added there was some concern
that upgrading users may not migrate to the new flow, causing
memory leaks in the pending-payment tracking.
While this is true, now that we're relying on the
pending_outbound_payments map for `send_payment` idempotency, the
risk of removing a payment prematurely goes up from "spurious
retry failure" to "sending a duplicative payment", which is much
worse.
Thus, we simply remove the automated payment timeout here,
explicitly requiring that users call `abandon_payment` when they
give up retrying a payment.
Previously, once a fulfilled outbound payment completed and all
associated HTLCs were resolved, we'd immediately remove the payment
entry from the `pending_outbound_payments` map.
Now that we're using the `pending_outbound_payments` map for send
idempotency, this presents a race condition - if the user makes a
redundant `send_payment` call at the same time that the original
payment's last HTLC is resolved, the user would reasonably expect
the `send_payment` call to fail due to our idempotency guarantees.
However, because the `pending_outbound_payments` entry is being
removed, if it completes first the `send_payment` call will
succeed even though the user has not had a chance to see the
corresponding `Event::PaymentSent`.
Instead, here, we delay removal of `Fulfilled`
`pending_outbound_payments` entries until several timer ticks have
passed without any corresponding event or HTLC pending.
In c986e52ce8, an `MppId` was added
to `HTLCSource` objects as a way of correlating HTLCs which belong
to the same payment when the `ChannelManager` sees an HTLC
succeed/fail. This allows it to have awareness of the state of all
HTLCs in a payment when it generates the ultimate user-facing
payment success/failure events. This was used in the same PR to
avoid generating duplicative success/failure events for a single
payment.
Because the field was only used as an internal token to correlate
HTLCs, and retries were not supported, it was generated randomly by
calling the `KeysInterface`'s 32-byte random-fetching function.
This also provided a backwards-compatibility story as the existing
HTLC randomization key was re-used for older clients.
In 28eea12bbe `MppId` was renamed to
the current `PaymentId` which was then used expose the
`retry_payment` interface, allowing users to send new HTLCs which
are considered a part of an existing payment.
At no point has the payment-sending API seriously considered
idempotency, a major drawback which leaves the API unsafe in most
deployments. Luckily, there is a simple solution - because the
`PaymentId` must be unique, and because payment information for a
given payment is held for several blocks after a payment
completes/fails, it represents an obvious idempotency token.
Here we simply require the user provide the `PaymentId` directly in
`send_payment`, allowing them to use whatever token they may
already have for a payment's idempotency token.
+ remove MaybeReadableArgs trait as it is now unused
+ remove onion_utils::DecodeInput as it would've now needed to be parameterized
by the CustomOnionMessageHandler trait, and we'd like to avoid either
implementing DecodeInput in messenger or having onion_utils depend on
onion_message::*
Co-authored-by: Matt Corallo <git@bluematt.me>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
The bindings have exported `io::Error` as, basically,
`io::ErrorKind`, for quite some time, so there's little reason to
not just export `io::ErrorKind` as well.
As we're moving towards monitor update async being a supported
use-case, we shouldn't call an async monitor update "failed", but
rather "in progress". This simply updates the internal channel.rs
enum name to reflect the new thinking.
If the initial ChannelMonitor persistence is done asynchronously
but does not complete before the node restarts (with a
ChannelManager persistence), we'll start back up with a channel
present but no corresponding ChannelMonitor.
Because the Channel is pending-monitor-update and has not yet
broadcasted its initial funding transaction or sent channel_ready,
this is not a violation of our API contract nor a safety violation.
However, the previous code would refuse to deserialize the
ChannelManager treating it as an API contract violation.
The solution is to test for this case explicitly and drop the
channel entirely as if the peer disconnected before we received
the funding_signed for outbound channels or before sending the
channel_ready for inbound channels.
OnionMessenger::new will now take a custom onion message handler trait
implementation. This handler will be used in upcoming commit(s) to handle
inbound custom onion messages.
The new trait also specifies what custom messages are supported via its
associated type, CustomMessage. This associated type must implement a new
CustomOnionMessagesContents trait, which requires custom messages to support
being written, being read, and supplying their TLV type.
If we receive a monitor event from a forwarded-to channel which
contains a preimage for an HTLC, we have to propogate that preimage
back to the forwarded-from channel monitor. However, once we have
that update, we're running in a relatively unsafe state - we have
the preimage in memory, but if we were to crash the forwarded-to
channel monitor will not regenerate the update with the preimage
for us. If we haven't managed to write the monitor update to the
forwarded-from channel by that point, we've lost the preimage, and,
thus, money!
When a `chain::Watch` `ChannelMonitor` update method is called, the
user has three options:
(a) persist the monitor update immediately and return success,
(b) fail to persist the monitor update immediately and return
failure,
(c) return a flag indicating the monitor update is in progress and
will complete in the future.
(c) is rather harmless, and in some deployments should be expected
to be the return value for all monitor update calls, but currently
requires returning `Err(ChannelMonitorUpdateErr::TemporaryFailure)`
which isn't very descriptive and sounds scarier than it is.
Instead, here, we change the return type used to be a single enum
(rather than a Result) and rename `TemporaryFailure`
`UpdateInProgress`.
The `forward_htlc` was prior to this commit only held at the same time
as the `channel_state` lock during the write process of the
`ChannelManager`. This commit removes the lock order dependency, by
taking the `channel_state`lock temporarily during the write process.
As we are eventually removing the `channel_state` lock, this commit
moves the `forward_htlcs` map out of the `channel_state` lock, to ease
that process.
See doc updates for more info on the edge case this prevents, and
there isn't really a strong reason why we would need to broadcast
the latest state immediately. Specifically, in the case of HTLC
claims (the most important reason to ensure we have state on chain
if it cannot be persisted), we will still force-close if there are
HTLCs which need claiming and are going to expire.
Surprisingly, there were no tests which failed as a result of this
change, but a new one has been added.
Now that the features contexts track the full set of all known
features, rather than the set of supported features, all defined
features should be listed in the context definition macro.
This adds a compile-time assertion to check that all bits for known
features are set in the context known set.
Now that the `*Features::known` constructor has been removed, there
is no reason to define feature bits as either optional required in
`features.rs` - that logic now belongs in the modules that are
responsible for the given features.
Instead, we only list all features in each context.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
Here we (finally) remove the `known` constructor entirely,
modifying tests in the `features` module as required.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
In anticipation of removing the `known` constructor, this commit
removes all remaining references to it outside of features.rs.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
Here we stop relying on the `known` method in the channel modules.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
Here we stop relying on the `known` method in the
functional_test_utils module.
Historically, LDK has considered the "set of known/supported
feature bits" to be an LDK-level thing. Increasingly this doesn't
make sense - different message handlers may provide or require
different feature sets.
In a previous PR, we began the process of transitioning with
feature bits sent to peers being sourced from the attached message
handler.
This commit makes further progress by moving the concept of which
feature bits are supported by our ChannelManager into
channelmanager.rs itself, via the new `provided_*_features`
methods, rather than in features.rs via the `known_channel_features`
and `known` methods.