functional_tests.rs is huge, so anything we can do to split it up
some is helpful. This also exposes a somewhat glaring lack of
reorgs in our existing tests.
If the ChannelManager never receives any blocks, it'll return a default blockhash
on deserialization. It's preferable for this to be an Option instead.
Now that ChannelMonitor uses an internal Mutex to support interior
mutability, ChainMonitor can use a RwLock to manage its ChannelMonitor
map. This allows parallelization of update_channel operations since an
exclusive lock only needs to be held when adding to the map in
watch_channel.
ChainMonitor accesses a set of ChannelMonitors behind a single Mutex.
As a result, update_channel operations cannot be parallelized. It also
requires using a RefCell around a ChannelMonitor when implementing
chain::Listen.
Moving the Mutex into ChannelMonitor avoids these problems and aligns it
better with other interfaces. Note, however, that get_funding_txo and
get_outputs_to_watch now clone the underlying data rather than returning
references.
We currently "support" not having a router or channel in memory by
forcing users to implement the same, but its trivial to provide our
own dummy implementations.
Add a utility for syncing a set of chain listeners to a common chain
tip. Required to use before creating an SpvClient when the chain
listener used with the client is actually a set of listeners each of
which may have had left off at a different block. This would occur when
the listeners had been persisted individually at different frequencies
(e.g., a ChainMonitor's individual ChannelMonitors).
* Implemented protocol.
* Made feature optional.
* Verify that the default value is true.
* Verify that on shutdown,
if Channel.supports_shutdown_anysegwit is enabled,
the script can be a witness program.
* Added a test that verifies that a scriptpubkey
for an unreleased segwit version is handled successfully.
* Added a test that verifies that
if node has op_shutdown_anysegwit disabled,
a scriptpubkey with an unreleased segwit version on shutdown
throws an error.
* Added peer InitFeatures to handle_shutdown
* Check if shutdown script is valid when given upfront.
* Added a test to verify that an invalid test results in error.
* Added a test to check that if a segwit script with version 0 is provided,
the updated anysegwit check detects it and returns unsupported.
* An empty script is only allowed when sent as upfront shutdown script,
so make sure that check is only done for accept/open_channel situations.
* Instead of reimplementing a variant of is_witness_script,
just call it and verify that the witness version is not 0.
The `ChannelKeys` object really isn't about keys at all anymore,
its all about signing. At the same time, we rename the type aliases
used in traits from both `ChanKeySigner` and `Keys` to just
`Signer` (or, in contexts where Channel isnt clear, `ChanSigner`).
This will allow the ChannelManager to signal when it has new
updates to persist, and adds a way for ChannelManager persisters
to be notified when they should re-persist the ChannelManager
to disk/backups.
Feature-gate the wait_timeout function because the core
lightning crate shouldn't depend on wallclock time unless
users opt into it.
Sadly, there's just not really a practical way to map a slice of
objects in our current bindings infrastructure - either we take
ownership of the underlying objects and move them into a Vec, or we
need to leave the original objects in place and have a list of
pointers to the Rust objects. Thus, the only practical mapping is
to create a slice of references using the pointers we have.
`Result` is in the standard prelude, so no need to ever use it.
Sadly, returning a Features<T> in the `impl Futures {}` block
will confuse our new alias-impl-printing logic, as we end up
running through the normal impl-block-printing logic as if we had
an explicit `impl ConcreteFeatures` block.
Previously, test_dynamic_spendable_outputs_local_htlc_success_tx
called connect_block with two identical transactions, which
resulted in duplicate SpendableOutputs Events back-to-back. This
is a test issue as such a block_connected call represents an
invalid block.
Both SpendableOutputDescriptor::DynamicOutputP2WSH and
SpendableOutputDescriptor::StaticOutputCounterpartyPayment are
relevant only in the context of a given channel, making them
candidates for being passed into helper functions in
`InMemoryChannelKeys`. This moves them into their own structs so
that they can later be used standalone.
We previously counted 35 bytes for a length + public key, but in
reality they are never larger than 34 bytes - 33 for the key and 1
for the push length.
This adds a channel_value_satoshis field to
SpendableOutputDescriptors as it is required to recreate our
InMemoryChannelKeys. It also slightly expands documentation.
Instead of `key_derivation_params` being a rather strange type, we
call it `channel_keys_id` and give it a generic 32 byte array. This
should be much clearer for users and also more flexible.
The only API change outside of additional derives is to change
the inner field in `DecodeError::Io()` to an `std::io::ErrorKind`
instead of an `std::io::Error`. While `std::io::Error` obviously
makes more sense in context, it doesn't support Clone, and the
inner error largely doesn't have a lot of value on its own.