This makes it easier for our automated bindings generator to
function as it tries to automatically create a ::new if the struct
contains only pub elements who's type is convertible.
This caused a bunch of cascading changes, including
passing loggers down to Channels in function calls
rather than having each Channel have a pointer to the
ChannelManager's Logger (which was a circular reference).
Other structs that the Channel had passed its Logger to also
had their loggers removed. Other newly unused Loggers were
also removed, especially when keeping them would've caused
a bunch of extra test changes to be necessary, e.g. with
the ChainWatchInterfaceUtil's Logger.
This simplifies channelmonitor quite nicely (as expected) as we
never have to be concerned with learning data in a DataLossProtect
which is require for us to claim our funds from the latest remote
commitment transaction.
Previous to this commit, variables such as their_channel_reserve
referred to the channel reserve that _we_ are required to keep,
(the value is initially set by the remote). Similarly,
variables such as our_channel_reserve referred to the channel
reserve that we require the remote to keep.
Change this to use local_channel_reserve / remote_channel_reserve
to refer to the the channel reserve that the local is required to keep
and the channel reserve that the remote is required to keep, respectively.
Converting from InitFeatures to other Features is accomplished using
Features::with_known_relevant_init_flags. Define a more general
to_context method which converts from Features of one Context to
another.
Additionally, ensure the source context only has known flags before
selecting flags for the target context.
Features for a given context are duplicated throughout the features
module. Use a macro for defining a Context and the applicable features
such that features only need to be defined for a Context in one place.
The Context provides bitmasks for selecting known and unknown feature
flags.
BOLT 1 and BOLT 9 refer to features as "known" if a peer understands
them. They also use the term "supported" to mean either optional or
required.
Update the features module to use similar terminology.
- Define contexts in terms of required and optional features rather than
just supported features
- Define known features as those that are optional or required
- Rename supported() constructor to known()
For completeness, clear_optional_bit for each feature is now called
clear_bits and clears both optional and required bits.
This is a key test for our automatic HTLC time-out logic, as it
ensures we don't allow an HTLC which indicates we should wait for
additional HTLCs before responding to cause us to force-close a
channel due to HTLC near-timeout.
expect_payment_failed!() was introduced after many of the tests
which could use it were written, so we take this opportunity to
switch them over now, increasing test coverage slightly by always
checking the payment hash expected.
We only do this for incoming HTLCs directly as we rely on channel
closure and HTLC-Timeout broadcast to fail any HTLCs which we
relayed onwards where our next-hop doesn't update_fail in time.
Previously, we created the initial ChannelMonitor on outbound
channels when we generated the funding_created message. This was
somewhat unnecessary as, at that time, we hadn't yet received
clearance to broadcast our initial funding transaction, and thus
there should never be any use for a ChannelMonitor. It also
complicated ChannelMonitor a bit as, at this point, we didn't have
an initial local commitment transaction.
By moving the creation of the initial ChannelMonitor to when we
receive our counterparty's funding_signed, we can ensure that any
ChannelMonitor will always have both a latest remote commitment tx
and a latest local commitment tx for broadcast.
This also fixes a strange API where we would close a channel
unceremoniously on peer-disconnection if we hadn't yet received the
funding_signed, but we'd already have a ChannelMonitor for that
channel. While it isn't strictly a bug (some potential DoS issues
aside), it is strange that these two definitions of a channel being
open were not in sync.
After we moved the ChannelMonitor creation later during Channel
init, we never went back and cleaned up ChannelMonitor to remove
a number of now-useless Option<>s, so we do that now.
This test tries the new lockdown logic in case of a signed-and-broadcast
local commitment transaction while a concurrent ChannelMonitorUpdate for
a next _local_ commitment is submitted from offchain. Update is rejected
as expected with a ChannelMonitorUpdateErr.
HTLC Transaction can't be bumped without sighash changes
so their gneeration is one-time for nwo. We move them in
OnchainTxHandler for simplifying ChannelMonitor and to prepare
storage of keys material behind one external signer interface.
Some tests break due to change in transaction broadcaster order.
Number of transactions may vary because of temporary anti-duplicata
tweak can't dissociate between 2- broadcast from different
origins (ChannelMonitor, ChannelManager) and 2-broadcast from same
component.
Local Commitment Transaction can't be bumped without anchor outputs
so their generation is one-time for now. We move them in
OnchainTxHandler for simplifying ChannelMonitor and to prepare
storage of keys material behind one external signer interface.
Some tests break due to change in transaction broadcast order but
number of transactions broadcast should stay the same.
Previously, we would regenerate this class of txn twice due to
block-rescan triggered by new watching outputs registered.
This commmit doesn't change behavior, it only tweaks TestBroadcaster
to ensure we modify cleanly tests anticipating next commit
refactor.
ChannelManager::send_payment stopped utilizing its ownership of the
Route with MPP (which, for readability, now clone()s the individual
paths when creating HTLCSource::OutboundRoute objects). While this
isn't ideal, it likely also makes sense to ensure that the user has
access to the Route after sending to correlate individual path
failures with the paths in the route or, in the future, retry
individual paths.
Thus, the easiest solution is to just take the Route by reference,
allowing the user to retain ownership.
This rather dramatically changes the return type of send_payment
making it much clearer when resending is safe and allowing us to
return a list of Results since different paths may have different
return values.
Base AMP is centered around the concept of a 'payment_secret` - an
opaque 32-byte random string which is used to authenticate the
sender to the recipient as well as tie the various HTLCs which
make up one payment together. This new field gets exposed in a
number of places, though sadly only as an Option for backwards
compatibility when sending to a receiver/receiving from a sender
which does not support Base AMP.
Sadly a huge diff here, but almost all of it is changing the method
signatures for sending/receiving/failing HTLCs and the
PaymentReceived event, which all now need to expose an
Option<[u8; 32]> for the payment_secret.
It doesn't yet properly fail back pending HTLCs when the full AMP
payment is never received (which should result in accidental
channel force-closures). Further, as sending AMP payments is not
yet supported, the only test here is a simple single-path payment
with a payment_secret in it.
Upon channel failure, any pending HTLCs in a channel's holding cell must
be failed backward. The added test exercises this behavior and
demonstrates a deadlock triggered within the handle_error!() macro. The
deadlock occurs when the channel_state lock is already held and then
reacquired when finish_force_close_channel() is called.
We delay SpendableOutputDescriptor until reaching ANTI_REORG_DELAY
to avoid misleading user wallet in case of reorg and alternative
settlement on a channel output.
Fix tests in consequence.
is_paying_spendable_output
Add ChannelMonitor::broadcasted_local_revokable_script to detect
onchain local txn paying back to us.
Fix tests in consequence
Previously, we would generate SpendableOutputDescriptor::StaticOutput
in OnchainTxHandler even if our claiming transaction wouldn't confirm
onchain, misbehaving user wallet to think it receives more funds than
in reality.
Fix tests in consequence
Bumping of justice txn on revoked HTLC-Success/HTLC-timeout is triggered
until our claim is confirmed onchain with at least
ANTI_REORG_DELAY_SAFE. Before this patch, we weren't tracking them in
check_spend_remote_htlc, leading us to infinite bumps.
Fix#411
Small fixes by Matt Corallo <git@bluematt.me>
Adjusted tx occurs when a previous aggregated claim tx has
seen one of its outpoint being partially claimed by a remote tx.
To pursue claiming of the remaining outpoint a adjusted claim tx
is generated with leftover of claimable outpoints.
Previously, in case of block-rescan where a partial claim occurs,
we would generate duplicated adjusted tx, wrongly inflating feerate
for next bumps. At rescan, if input has already been dropped from
outpoints map from a claiming request, don't regenerate again
a adjuste tx.