This increases the CLTV_CLAIM_BUFFER constant to 18, much better
capturing how long it takes to go on chain to claim payments.
This is also more in line with other clients, and the spec, which
sets the default CLTV delay in invoices to 18.
As a side effect, we have to increase MIN_CLTV_EXPIRY_DELTA as
otherwise as are subject to an attack where someone can hold an
HTLC being forwarded long enough that we *also* close the channel
on which we received the HTLC.
Current Bitcoin Core's policy will reject a p2wsh as a dust if it's
under 330 satoshis. A typical p2wsh output is 43 bytes big to which
Core's `GetDustThreshold()` sums up a minimal spend of 67 bytes (even
if a p2wsh witnessScript might be smaller). `dustRelayFee` is set
to 3000 sat/kb, thus 110 * 3000 / 1000 = 330. As all time-sensitive
outputs are p2wsh, a value of 330 sat is the lower bound desired
to ensure good propagation of transactions. We give a bit margin to
our counterparty and pick up 660 satoshis as an accepted
`dust_limit_satoshis` upper bound.
As this reasoning is tricky and error-prone we hardcode it instead of
letting the user picking up a non-sense value.
Further, this lower bound of 330 sats is also hardcoded as another constant
(MIN_DUST_LIMIT_SATOSHIS) instead of being dynamically computed on
feerate (derive_holder_dust_limit_satoshis`). Reducing risks of
non-propagating transactions in casee of failing fee festimation.
Like the payment_secret parameter, this paramter has been the source
of much confusion, so we just drop it.
Users should prefer to do this check when registering the payment
secret instead of at claim-time.
This allows users to store metadata about an invoice at
invoice-generation time and then index into that storage with a
general-purpose id when they call `get_payment_secret`. They will
then be provided the same index when the payment has been received.
There is a possible race condition when both the latest block hash and
height are needed. Combine these in one struct and place them behind a
single lock.
Instead of relying on the user to ensure the funding transaction is
correct (and panicing when it is confirmed), we should check it is
correct when it is generated. By taking the full funding transaciton
from the user on generation, we can also handle broadcasting for
them instead of doing so via an event.
Sadly the connected-in-order tests have to be skipped in our normal
test suite as many tests violate it. Luckily we can still enforce
it in the tests which run in other crates.
Co-authored-by: Matt Corallo <git@bluematt.me>
Co-authored-by: Jeffrey Czyz <jkczyz@gmail.com>
We currently only use it to override the graph-specific features
returned in the route, though we should also use it to enable or
disable MPP.
Note that tests which relied on MPP behavior have had all of their
get_route calls upgraded to provide the MPP flag.
When ChannelMonitors are persisted, they need to store the most recent
block hash seen. However, for newly created channels the default block
hash is used. If persisted before a block is connected, the funding
output may be missed when syncing after a restart. Instead, initialize
ChannelManager with a "birthday" hash so it can be used later when
creating channels.
The `ChannelKeys` object really isn't about keys at all anymore,
its all about signing. At the same time, we rename the type aliases
used in traits from both `ChanKeySigner` and `Keys` to just
`Signer` (or, in contexts where Channel isnt clear, `ChanSigner`).
Instead of `key_derivation_params` being a rather strange type, we
call it `channel_keys_id` and give it a generic 32 byte array. This
should be much clearer for users and also more flexible.
ChannelManager::force_close_channel does not fail if a non-existing channel id is being passed, making it hard to catch from an API point of view.
Makes force_close_channel return in the same way close_channel does so the user calling the method with an unknown id can be warned.
This adds a new method to the general cross-channel `KeysInterface`
which requires it to handle the deserialization of per-channel
signer objects. This allows the deserialization of per-channel
signers to have more context available, which, in the case of the
C bindings, includes the actual KeysInterface information itself.
This changes adds the genesis block hash as a BlockHash to the
NetworkGraph struct. Making the NetworkGraph aware allows the message
handler to validate the chain_hash for received messages. This change
also adds the hash value to the Writeable and Readable methods.
- The ChainMonitor should:
Whenever a new channel is added or updated, these updates
should be conveyed to the persister and persisted to disk.
Even if the update errors while it's being applied, the
updated monitor still needs to be persisted.
Given the chain::Watch interface is defined in terms of ChannelMonitor
and ChannelMonitorUpdateErr, move channelmonitor.rs from the ln module
to the chain module.
WatchEventProvider served as a means for replacing ChainWatchInterface.
However, it requires users to explicitly fetch WatchEvents, even if not
interested in them. Replace WatchEventProvider by chain::Filter, which
is an optional member of ChainMonitor. If set, interesting transactions
and output spends are registered such that blocks containing them can be
retrieved from a chain source in an efficient manner.
This is useful when the chain source is not a full node. For Electrum,
it allows for pre-filtered blocks. For BIP157/158, it serves as a means
to match against compact filters.
BlockNotifier was removed in the previous commit, thus ChainListener is
no longer needed. Instead, anything needing chain events should be
notified directly.
ChainMonitor's template Key parameter was meant to allow supporting
both local monitoring, where Key=OutPoint, and watchtowers, where Key=
(PublicKey, u32). Use OutPoint directly since the watchtower case will
not be supported this way.
ManyChannelMonitor was renamed chain::Watch in the previous commit. Use
a more concise name for an implementation that monitors the chain for
channel activity. Future work will parameterize the struct to allow for
different varieties of persistence. Thus, users usually will be able to
use ChainMonitor directly rather than implementing a chain::Watch that
wraps it.
ChainWatchInterface was intended as an interface for watching rather
than accessing the chain. Remove get_chain_utxo and add chain::Access
trait for this behavior. Wrap it with an Option in NetGraphMsgHandler in
order to simplify the error interface.
Use of ChainWatchInterface was replaced with WatchEvent in the previous
commit. Remove it from the parameterization of SimpleManyChannelMonitor
since it is no longer needed.
ChainListeners should be independent of each other, but in practice this
is not the case because ChainWatchInterface introduces a dependency
between them. Push ChainWatchInterface down into the ChainListener
implementations where needed. Update ChainListener's block_connected
method to take a slice of the form &[(usize, &Transaction)] where each
transaction is paired with its position within the block.
Due to a desire to be able to override temporary channel IDs and
onion keys, KeysInterface had two separate fetch-random-32-bytes
interfaces - an onion-key specific version which fetched 2 random
32 byte strings and a temporary-channel-id specific version.
It turns out, we never actually need to override both at once (as
creating a new channel and sending an outbound payment are always
separate top-level calls), so there's no reason to add two
functions to the interface when both really do the same thing.
This changes the LICENSE file and adds license headers to most files
to relicense under dual Apache-2.0 and MIT. This is helpful in that
we retain the patent grant issued under Apache-2.0-licensed work,
avoiding some sticky patent issues, while still allowing users who
are more comfortable with the simpler MIT license to use that.
See https://github.com/rust-bitcoin/rust-lightning/issues/659 for
relicensing statements from code authors.
We use them largely as indexes into a Vec<Transaction> so there's
little reason for them to be u32s. Instead, use them as usize
everywhere.
We also take this opportunity to add range checks before
short_channel_id calculation, as we could otherwise end up with a
bogus short_channel_id due to an output index out of range.
This was just an oversight when route calculation was split up into
parts - it makes no sense for get_route to require that we have a
full route message handler, only a network graph (which can always
be accessed from a NetGraphMsgHandler anyway).
When we were sending an open_channel messages we were asking the
feerate estimator for a new value instead of using the one we had.
If the feerate estimator gave a different value than the one it did
when we created the Channel struct, we'd start out-of-sync with our
counterparty and blow up on funding_signed. Even worse, the
ConfirmationTarget used was different, so its highly likely they
would disagree.
Also remove newly unused fee estimator parameter from get_open-channel
API.
Co-authored-by: Matt Corallo <git@bluematt.me>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
A dynamic-p2wsh-output like `to_local` on local commitment/HTLC txn
require a signature from delayed_payment_key to be spend. Instead of
sending private key in descriptor, we ask for spender to derive again
the corresponding ChannelKeys based on key state, uniquely identifying
a channel and encompassing its unique start data.
Descriptor modification is done in next commit.
We also update to use single idents when referencing the Deref=*
types since the automated code generator is pretty braindead.
This also moves some test utils out of peer_handler.rs and into
util::test_utils to standardize things a little bit, which we need
to concretize the PeerHandler types used in testing.
This makes it easier for our automated bindings generator to
function as it tries to automatically create a ::new if the struct
contains only pub elements who's type is convertible.