Adds two new payment `Method`s for identifying payments with custom
`min_final_cltv_expiry_delta` as payments with LDK or user payment
hashes.
The `min_final_cltv_expiry_delta` value is packed into the first 2
bytes of the expiry timestamp in the payment secret metadata.
All utility functions for invoice construction will now also accept an
Option<>al `min_final_cltv_expiry_delta` which is useful for things like
swaps etc. The `min_final_cltv_expiry_delta` will default back to
`MIN_FINAL_CLTV_EXPIRY_DELTA` if `None` is provided.
This matches the spec and helps avoid any confusion around
naming. We're also then consistent with `cltv_expiry` in an HTLC being
the actual block height value for the CLTV and not a delta.
Secrets should not be exposed in-memory at the interface level as it
would be impossible the implement it against a hardware security
module/secure element.
We have a number of debug assertions which are expected to never
fire when running in a single thread. This is just fine in tests,
and gives us good coverage of our lockorder requirements, but is
not-irregularly surprising to users, who may run with their own
debug assertions in test environments.
Instead, we gate these checks by the `cfg(test)` setting as well as
the `_test_utils` feature, ensuring they run in our own tests, but
not downstream tests.
In the next commit(s) we'll start holding `ChannelMonitorUpdate`s
that are being persisted in `Channel`s until they're done
persisting. In order to do that, switch to applying the updates by
reference instead of value.
This fixes a crash in the `full_stack_target` fuzz test (found by
Chaincode's generous fuzzing infrastructure!) but ultimately is a
better error code - a peer disconnecting before we can fund a
channel isn't a "misuse error" its an unavailable channel.
In newer versions of `hashbrown` this code would be broken. While
we aren't updating `hashbrown` any time soon (as it requires an
MSRV bump), it is useful to swap for a newer `hashbrown` when
fuzzing, which this makes easier.
This is purely a refactor that does not change the InitFeatures
advertised by a ChannelManager. This allows users to configure which
features should be advertised based on the values of `UserConfig`. While
there aren't any existing features currently leveraging this behavior,
it will be used by the upcoming anchors_zero_fee_htlc_tx feature.
The UserConfig dependency on provided_init_features caused most
callsites of the main test methods responsible for opening channels to
be updated. This commit foregos that completely by no longer requiring
the InitFeatures of each side to be provided to these methods. The
methods already require a reference to each node's ChannelManager to
open the channel, so we use that same reference to obtain their
InitFeatures. A way to override such features was required for some
tests, so a new `override_init_features` config option now exists on
the test harness.
Every exported macro needed to have all the macros used inside it:
1- to be exported as well.
2- be called from the `$crate` namespace so it works in other crates.
Some structs in `lightning::util::ser` needed to be made public as they were used inside the exported macros.
Use the macros like this:
```Rust
lightning::impl_writeable_tlv_based!(...)
```
Once ChannelManager supports payment retries, it will make more sense for its
current send_payment method to be named send_payment_with_route because
retrying should be the default. Here we get a head start on this by making the
rename in outbound_payment, but not changing the public interface yet.
This allows us to move a lot of outbound payment logic out of ChannelManager
and into the new outbound_payment module, and helps avoid growing
ChannelManager when we add retry logic to it in upcoming work.
We want to move all outbound payment-related things to this new module, to help
break up ChannelManager so future payment retries work doesn't increase the
size of ChannelManager.
If, after forwarding an intercepted payment to our counterparty, we
restart with a ChannelMonitor update having been persisted, but the
corresponding ChannelManager update not having been persisted,
we'll still have the intercepted HTLC in the
`pending_intercepted_htlcs` map on start (and potentially a pending
`HTLCIntercepted` event). This will cause us to allow the user to
handle the forwarded HTLC twice, potentially double-forwarding it.
This builds on 0bb87ddad7, which
provided a preemptive fix for the general relay case (though it was
not an actual issue at the time). We simply check for the HTLCs
having been forwarded on startup and remove them from the map.
Fixes#1858