`PaymentParams` is all about the parameters for a payment, i.e. the
parameters which are static across all the paths of a paymet.
`RouteParameters` is about the information specific to a given
`Route` (i.e. a set of paths, among multiple potential sets of
paths for a payment). The CLTV delta thus doesn't belong in
`RouterParameters` but instead in `PaymentParameters`.
Worse, because `RouteParameters` is built from the information in
the last hops of a `Route`, when we deliberately inflate the CLTV
delta in path-finding, retries of the payment will have the final
CLTV delta double-inflated as it inflates starting from the final
CLTV delta used in the last attempt.
By moving the CLTV delta to `PaymentParameters` we avoid this
issue, leaving only the sought amount in the `RouteParameters`.
Adds two new payment `Method`s for identifying payments with custom
`min_final_cltv_expiry_delta` as payments with LDK or user payment
hashes.
The `min_final_cltv_expiry_delta` value is packed into the first 2
bytes of the expiry timestamp in the payment secret metadata.
Secrets should not be exposed in-memory at the interface level as it
would be impossible the implement it against a hardware security
module/secure element.
In the next commit(s) we'll start holding `ChannelMonitorUpdate`s
that are being persisted in `Channel`s until they're done
persisting. In order to do that, switch to applying the updates by
reference instead of value.
This fixes a crash in the `full_stack_target` fuzz test (found by
Chaincode's generous fuzzing infrastructure!) but ultimately is a
better error code - a peer disconnecting before we can fund a
channel isn't a "misuse error" its an unavailable channel.
hashbrown by default uses ahash, which may be a bit faster, but
more importantly, if we upgrade to hashbrown 0.13/ahash 0.8 we can
make it use a constant randomization factor, making fuzzers happier.
This is purely a refactor that does not change the InitFeatures
advertised by a ChannelManager. This allows users to configure which
features should be advertised based on the values of `UserConfig`. While
there aren't any existing features currently leveraging this behavior,
it will be used by the upcoming anchors_zero_fee_htlc_tx feature.
The UserConfig dependency on provided_init_features caused most
callsites of the main test methods responsible for opening channels to
be updated. This commit foregos that completely by no longer requiring
the InitFeatures of each side to be provided to these methods. The
methods already require a reference to each node's ChannelManager to
open the channel, so we use that same reference to obtain their
InitFeatures. A way to override such features was required for some
tests, so a new `override_init_features` config option now exists on
the test harness.
`get_channel_signer` previously had two different responsibilites:
generating unique `channel_keys_id` and using said ID to derive channel
keys. We decide to split it into two methods `generate_channel_keys_id`
and `derive_channel_signer`, such that we can use the latter to fulfill
our goal of re-deriving signers instead of persisting them. There's no
point in storing data that can be easily re-derived.
Soon we're going to need to return an error when ChannelManager is unable to
find a route, so we'll need a way to distinguish between that and the user
supplying an invalid route.
We increase the `user_channel_id` type from `u64` to `u128`. In order to
maintain backwards compatibility, we have to de-/serialize it as two
separate `u64`s in `Event` as well as in the `Channel` itself.
When a user attempts to send a payment but it fails due to
idempotency key violation, they need to know that this was the
reason as they need to handle the error programmatically
differently from other errors.
Here we simply add a new `PaymentSendFailure` enum variant for
`DuplicatePayment` to allow for that.
It was pointed out that its quite confusing that
`AllFailedRetrySafe` does not allow you to call `retry_payment`,
though the documentation on it does specify this. Instead, we
simply rename it to `AllFailedResendSafe` to indicate that the
action that is safe to take is *resending*, not *retrying*.
In c986e52ce8, an `MppId` was added
to `HTLCSource` objects as a way of correlating HTLCs which belong
to the same payment when the `ChannelManager` sees an HTLC
succeed/fail. This allows it to have awareness of the state of all
HTLCs in a payment when it generates the ultimate user-facing
payment success/failure events. This was used in the same PR to
avoid generating duplicative success/failure events for a single
payment.
Because the field was only used as an internal token to correlate
HTLCs, and retries were not supported, it was generated randomly by
calling the `KeysInterface`'s 32-byte random-fetching function.
This also provided a backwards-compatibility story as the existing
HTLC randomization key was re-used for older clients.
In 28eea12bbe `MppId` was renamed to
the current `PaymentId` which was then used expose the
`retry_payment` interface, allowing users to send new HTLCs which
are considered a part of an existing payment.
At no point has the payment-sending API seriously considered
idempotency, a major drawback which leaves the API unsafe in most
deployments. Luckily, there is a simple solution - because the
`PaymentId` must be unique, and because payment information for a
given payment is held for several blocks after a payment
completes/fails, it represents an obvious idempotency token.
Here we simply require the user provide the `PaymentId` directly in
`send_payment`, allowing them to use whatever token they may
already have for a payment's idempotency token.
+ remove MaybeReadableArgs trait as it is now unused
+ remove onion_utils::DecodeInput as it would've now needed to be parameterized
by the CustomOnionMessageHandler trait, and we'd like to avoid either
implementing DecodeInput in messenger or having onion_utils depend on
onion_message::*
Co-authored-by: Matt Corallo <git@bluematt.me>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
This uses the work done in the preceding commits to implement encoding a user's
custom TLV in outbound onion messages, and decoding custom TLVs in inbound
onion messages, to be provided to the new CustomOnionMessageHandler.
OnionMessenger::new will now take a custom onion message handler trait
implementation. This handler will be used in upcoming commit(s) to handle
inbound custom onion messages.
The new trait also specifies what custom messages are supported via its
associated type, CustomMessage. This associated type must implement a new
CustomOnionMessagesContents trait, which requires custom messages to support
being written, being read, and supplying their TLV type.
When a `chain::Watch` `ChannelMonitor` update method is called, the
user has three options:
(a) persist the monitor update immediately and return success,
(b) fail to persist the monitor update immediately and return
failure,
(c) return a flag indicating the monitor update is in progress and
will complete in the future.
(c) is rather harmless, and in some deployments should be expected
to be the return value for all monitor update calls, but currently
requires returning `Err(ChannelMonitorUpdateErr::TemporaryFailure)`
which isn't very descriptive and sounds scarier than it is.
Instead, here, we change the return type used to be a single enum
(rather than a Result) and rename `TemporaryFailure`
`UpdateInProgress`.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
Here we stop relying on the `known` method in our fuzz tests.