When we had a event which caused us to set the persist flag in a
PersistenceNotifier in between wait calls, we will still wait,
potentially not persisting a ChannelManager when we should.
Worse, for wait_timeout, this caused us to always wait up to the
timeout, but then always return true that a persistence is needed.
Instead, we simply check the persist flag before waiting, returning
immediately if it is set.
Currently, when a user calls `ChannelManager::timer_tick_occurred`
we always set the persister's update flag to true. This results in
a ChannelManager persistence after each timer tick, even when
nothing happened.
Instead, we add a new flag to `PersistenceNotifierGuard` to
indicate if we should skip setting the update flag.
Currently, we only send an update_channel message after
disconnecting a peer and waiting some time. We do not send a
followup when the peer has been reconnected for some time.
This changes that behavior to make the disconnect and reconnect
channel updates symmetric, and also simplifies the state machine
somewhat to make it more clear.
Finally, it serializes the current announcement state so that we
usually know when we need to send a new update_channel.
Our enforced requirements for HTLC acceptance is that we have at
least HTLC_FAIL_BACK_BUFFER blocks before the HTLC expires. When we
receive an HTLC, the HTLC would be "already expired" if its
`cltv_expiry` is current-block + 1 (ie the next block could
broadcast the commitment transaction and time out the HTLC). From
there, we want an extra HTLC_FAIL_BACK_BUFFER in blocks, plus an
extra block or two to account for any differences in the view of
the current height before send or while the HTLC is transiting the
network.
This increases the CLTV_CLAIM_BUFFER constant to 18, much better
capturing how long it takes to go on chain to claim payments.
This is also more in line with other clients, and the spec, which
sets the default CLTV delay in invoices to 18.
As a side effect, we have to increase MIN_CLTV_EXPIRY_DELTA as
otherwise as are subject to an attack where someone can hold an
HTLC being forwarded long enough that we *also* close the channel
on which we received the HTLC.
In #797, we stopped enforcing that read/sent node_announcements
had their addresses sorted. While this is fine in practice, we
should still make a best-effort to sort them to comply with the
spec's forward-compatibility requirements, which we do here in the
ChannelManager.
For users who get PaymentPreimages via
`get_payment_secret_preimage`, they need to provide the
PaymentPreimage back in `claim_funds` but they aren't actually
given the preimage anywhere.
This commit gives users the PaymentPreimage in the
`PaymentReceived` event.
Like the payment_secret parameter, this paramter has been the source
of much confusion, so we just drop it.
Users should prefer to do this check when registering the payment
secret instead of at claim-time.
This allows users to store metadata about an invoice at
invoice-generation time and then index into that storage with a
general-purpose id when they call `get_payment_secret`. They will
then be provided the same index when the payment has been received.
Our current PaymentReceived API is incredibly easy to mis-use -
the "obvious" way to implement a client is to always call
`ChannelManager::claim_funds` in response to a `PaymentReceived`
event. However, users are *required* to check the payment secret
and value against the expected values before claiming in order to
avoid a number of potentially funds-losing attacks.
Instead, if we rely on payment secrets being pre-registered with
the ChannelManager before we receive HTLCs for a payment we can
simply check the payment secrets and never generate
`PaymentReceived` events if they do not match. Further, when the
user knows the value to expect in advance, we can have them
register it as well, allowing us to check it for them.
Other implementations already require payment secrets for inbound
payments, so this shouldn't materially lose compatibility.
This prepares us for requiring payment_secrets for all received
payments, by demonstrating test changes work even prior to the new
requirement.
In order to avoid needing to pipe payment secrets through to
additional places in the claim logic and then removing that
infrastructure once payment secrets are required, we use the new
payment secret storage in ChannelManager to look up the payment
secret for any given pament hash in claim and fail-back functions.
This part of the diff is reverted in the next commit.
This adds support for tracking payment secrets and (optionally)
payment preimages in ChannelManager. This potentially makes client
implementations much simper as they don't have to have external
payment preimage tracking.
This doesn't yet use such tracking anywhere.
During the block API refactor, we started calling
Channel::force_shutdown when a channel is closed due to a bogus
funding tx. However, we still set the channel's state to Shutdown
prior to doing so, leading to an assertion in force_shutdown (that
the channel is not already closed).
This removes the state-set call and adds a (long-overdue) test for
this case.
Fixes: 60b962a18e
There is a possible race condition when both the latest block hash and
height are needed. Combine these in one struct and place them behind a
single lock.
Instead of relying on the user to ensure the funding transaction is
correct (and panicing when it is confirmed), we should check it is
correct when it is generated. By taking the full funding transaciton
from the user on generation, we can also handle broadcasting for
them instead of doing so via an event.
When we force-close a channel, for whatever reason, it is nice to
send an error message to our peer. This allows them to closes the
channel on their end instead of trying to send through it and
failing. Further, it may induce them to broadcast their commitment
transaction, possibly getting that confirmed and saving us on fees.
This commit adds a few more cases where we should have been sending
error messages but weren't. It also includes an almost-global
replace in tests of the second argument in
`check_closed_broadcast!()` from false to true (indicating an error
message is expected). There are only a few exceptions, notably
those where the closure is the result of our counterparty having
sent *us* an error message.
Previously, we expected every block to be connected in-order,
allowing us to track confirmations by simply incrementing a counter
for each new block connected. In anticipation of moving to a
update-height model in the next commit, this moves to tracking
confirmations by simply storing the height at which the funding
transaction was confirmed.
This commit also corrects our "funding was reorganized out of the
best chain" heuristic, instead of a flat 6 blocks, it uses half the
confirmation count required as the point at which we force-close.
Even still, for low confirmation counts (eg 1 block), an ill-timed
reorg may still cause spurious force-closes, though that behavior
is not new in this commit.