If we're sending straight to a blinded route with no unblinded intermediate
hops, and we are the introduction node, we need to advance the blinded route by
one hop so that the second hop is the new introduction node.
Because we now never generate an `EffectiveCapacity` with an
`htlc_maximum_msat` set to `None`, making it non-`Option`al
effectively removes dead code, which we do here.
We currently construct `DirectedChannelInfo`s for routing before
checking if the given direction has its directional info filled in.
We then always check for directional info before actually deciding
to route over a channel, as otherwise we assume the channel is not
online.
This makes for somewhat redundant checks, and `DirectedCHannelInfo`
isn't, by itself, a very useful API. Because fetching the HTLC-max
or effective channel capacity gives spurious data if no directional
info is available, there's little reason to have that data
available, and so we here check for directional info first. This
effectively merges `DirectionalChannelInfo` and
`DirectionalChannelInfoWithUpdate`.
+ remove MaybeReadableArgs trait as it is now unused
+ remove onion_utils::DecodeInput as it would've now needed to be parameterized
by the CustomOnionMessageHandler trait, and we'd like to avoid either
implementing DecodeInput in messenger or having onion_utils depend on
onion_message::*
Co-authored-by: Matt Corallo <git@bluematt.me>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
The bindings have exported `io::Error` as, basically,
`io::ErrorKind`, for quite some time, so there's little reason to
not just export `io::ErrorKind` as well.
Useful since we're working on getting rid of KeysInterface::get_node_secret to
complete support for remote signing.
Will be used in upcoming work to check whether an outbound onion message
blinded path has our node id as the introduction node id
In 56b07e52aa we made
`MultiThreadedLockableScore` fully bindings-compatible. However, it
did not add a `WriteableScore` implementation for it. This was an
oversight as it is a `WriteableScore` in Rust and needs to be for
use in other parts of the API.
Here we add the required impl in a way that the bindings generator
is able to handle it and add conversion utilities.
This uses the work done in the preceding commits to implement encoding a user's
custom TLV in outbound onion messages, and decoding custom TLVs in inbound
onion messages, to be provided to the new CustomOnionMessageHandler.
As we're moving towards monitor update async being a supported
use-case, we shouldn't call an async monitor update "failed", but
rather "in progress". This simply updates the internal channel.rs
enum name to reflect the new thinking.
If the initial ChannelMonitor persistence is done asynchronously
but does not complete before the node restarts (with a
ChannelManager persistence), we'll start back up with a channel
present but no corresponding ChannelMonitor.
Because the Channel is pending-monitor-update and has not yet
broadcasted its initial funding transaction or sent channel_ready,
this is not a violation of our API contract nor a safety violation.
However, the previous code would refuse to deserialize the
ChannelManager treating it as an API contract violation.
The solution is to test for this case explicitly and drop the
channel entirely as if the peer disconnected before we received
the funding_signed for outbound channels or before sending the
channel_ready for inbound channels.
As we integrate the support of anchor outputs, we'll want to know if
each input we're working with came from an anchor outputs channel.
Instead of threading through a `opt_anchors` boolean across several
methods on `PackageSolvingData` and `PackageTemplate`, we decide to
store a reference in each `PackageSolvingData` variant instead that
features a change in behavior between channels with and without anchor
outputs.
While applying gossip info from RGS-server, number of harmless
errors might arise which should be ignored. E.g. client should not
fail if there is a duplicate gossip for same channel or duplicate
update.
OnionMessageContents specifies the data TLV that the sender wants in the onion
message. This enum only has one variant for now, Custom. When offers are added,
additional variants for invoice, invoice_request, and invoice_error will be
added.
This commit does not actually implement sending the custom OM contents, just
the API change.
OnionMessenger::new will now take a custom onion message handler trait
implementation. This handler will be used in upcoming commit(s) to handle
inbound custom onion messages.
The new trait also specifies what custom messages are supported via its
associated type, CustomMessage. This associated type must implement a new
CustomOnionMessagesContents trait, which requires custom messages to support
being written, being read, and supplying their TLV type.
Useful in decoding a custom message, so (a) the message type can be provided to
the handler and (b) None can be returned if the message type is unknown.
Used in upcoming commit(s) to support custom onion messages.