When we process a `channel_reestablish` message we free the HTLC
update holding cell as things may have changed while we were
disconnected. However, some time ago, to handle freeing from the
holding cell when a monitor update completes, we added a holding
cell freeing check in `get_and_clear_pending_msg_events`. This
leaves the in-`channel_reestablish` holding cell clear redundant,
as doing it immediately or is `get_and_clear_pending_msg_events` is
not a user-visible difference.
Thus, we remove the redundant code here, substantially simplifying
`handle_chan_restoration_locked` while we're at it.
LND nodes have very broken fee estimators, causing them to suggest
feerates that don't even meet a current mempool minimum feerate
when fees go up over the course of hours. This can cause us to
reject their feerate estimates as they're not high enough, even
though their new feerate is higher than what we had already (which
is the feerate we'll use to broadcast a closing transaction). This
implies we force-close the channel and broadcast something with a
feerate lower than our counterparty was offering.
Here we simply accept such feerates as they are better than what we
had. We really should also close the channel, but only after we
get their signature on the new feerate. That should happen by
checking channel feerates every time we see a new block so is
orthogonal to this code.
Ultimately the fix is anchor outputs plus package-based relay in
Bitcoin Core, however we're still quite some ways from that, so
worth needlessly closing channels for now.
We increase the `user_channel_id` type from `u64` to `u128`. In order to
maintain backwards compatibility, we have to de-/serialize it as two
separate `u64`s in `Event` as well as in the `Channel` itself.
Previously, `Confirm::get_relevant_txids()` only returned a list of
transactions that have to be monitored for reorganization out of the
chain. This interface however required double bookkeeping: while we
internally keep track of the best block, height, etc, it would also
require the user to keep track which transaction was previously
confirmed in which block and to take actions based on any change, e.g,
to reconfirm them when the block would be reorged-out and the
transactions had been reconfirmed in another block.
Here, we track the confirmation block hash internally and return it via
`Confirm::get_relevant_txids()` to the user, which alleviates the
requirement for double bookkeeping: the user can now simply check
whether the given transaction is still confirmed and in the given block,
and take action if not.
We also split `update_claims_view`: Previously it was one, now it's two
methods: `update_claims_view_from_matched_txn` and
`update_claims_view_from_requests`.
We rename `ChannelState::ChannelFunded` to `ChannelState::ChannelReady`
as we'll be in this state when both sides sent the `ChannelReady`
messages, which may also be before funding in the 0conf case.
As we're moving towards monitor update async being a supported
use-case, we shouldn't call an async monitor update "failed", but
rather "in progress". This simply updates the internal channel.rs
enum name to reflect the new thinking.
If the initial ChannelMonitor persistence is done asynchronously
but does not complete before the node restarts (with a
ChannelManager persistence), we'll start back up with a channel
present but no corresponding ChannelMonitor.
Because the Channel is pending-monitor-update and has not yet
broadcasted its initial funding transaction or sent channel_ready,
this is not a violation of our API contract nor a safety violation.
However, the previous code would refuse to deserialize the
ChannelManager treating it as an API contract violation.
The solution is to test for this case explicitly and drop the
channel entirely as if the peer disconnected before we received
the funding_signed for outbound channels or before sending the
channel_ready for inbound channels.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
Here we stop relying on the `known` method in the channel modules.
Historically, LDK has considered the "set of known/supported
feature bits" to be an LDK-level thing. Increasingly this doesn't
make sense - different message handlers may provide or require
different feature sets.
In a previous PR, we began the process of transitioning with
feature bits sent to peers being sourced from the attached message
handler.
This commit makes further progress by moving the concept of which
feature bits are supported by our ChannelManager into
channelmanager.rs itself, via the new `provided_*_features`
methods, rather than in features.rs via the `known_channel_features`
and `known` methods.
Each test featuring HTLCs had a minimum and maximum feerate case. This
is no longer necessary for the zero HTLC transaction anchors variant as
the commitment feerate does not impact whether HTLCs can be trimmed or
not, only the dust limit does.
With the zero fee HTLC transaction anchors variant, HTLCs can no longer
be trimmed due to their amount being too low to have a mempool valid
HTLC transaction. Now they can only be trimmed based on the dust limit
of each party within the channel.
When we receive a block we always test if we should send our
channel_ready via `check_get_channel_ready`. If the channel in
question requires confirmations, we quickly return if the funding
transaction has not yet confirmed (or even been defined), however
for 0conf channels the checks are necessarily more involved.
In any case, we wish to panic if the funding transaction has
confirmations prior to when it should have been broadcasted. This
is useful as it is easy for users to violate our broadcast-time
invariants without noticing and the panic gives us an opportunity
to catch it.
Sadly, in the case of 0conf channels, if we hadn't yet seen the
funding transaction at all but receive a block we would hit this
sanity check as we don't check whether there are actually funding
transaction confirmations prior to panicing.
This method will help us avoid retrieving our node secret, something we want to
get rid of entirely. It will be used in upcoming commits when decoding the
onion message packet, and in future PRs to help us get rid of
KeysInterface::get_node_secret usages across the codebase
It is proportion of the channel value to configure as the
`their_channel_reserve_satoshis` for both outbound and inbound channels.
It decides the minimum balance that the other node has to maintain on their
side, at all times.
As the map values are no longer only `channel_id`s, but also a
`counterparty_node_id`s, the map is renamed to better correspond to
whats actually stored in the map.
When we receive a `channel_reestablish` with a `data_loss_protect`
that proves we're running with a stale state, instead of
force-closing the channel, we immediately panic. This lines up with
our refusal to run if we find a `ChannelMonitor` which is stale
compared to our `ChannelManager` during `ChannelManager`
deserialization. Ultimately both are an indication of the same
thing - that the API requirements on `chain::Watch` were violated.
In the "running with outdated state but ChannelMonitor(s) and
ChannelManager lined up" case specifically its likely we're running
off of an old backup, in which case connecting to peers with
channels still live is explicitly dangerous. That said, because
this could be an operator error that is correctable, panicing
instead of force-closing may allow for normal operation again in
the future (cc #1207).
In any case, we provide instructions in the panic message for how
to force-close channels prior to peer connection, as well as a note
on how to broadcast the latest state if users are willing to take
the risk.
Note that this is still somewhat unsafe until we resolve#1563.
This is mostly motivated by the fact that payments may happen while the
latest `ChannelUpdate` indicating our new `ChannelConfig` is still
propagating throughout the network. By temporarily allowing the previous
config, we can help reduce payment failures across the network.
We do this to prevent payment failures while the `ChannelUpdate` for the
new `ChannelConfig` still propagates throughout the network. In a follow
up commit, we'll honor forwarding HTLCs that were constructed based on
either the previous or current `ChannelConfig`.
To handle expiration (when we should stop allowing the previous config),
we rely on the ChannelManager's `timer_tick_occurred` method. After
enough ticks, the previous config is cleared from memory, and only the
current config applies moving forward.
A new `update_channel_config` method is exposed on the `ChannelManger`
to update the `ChannelConfig` for a set of channels atomically. New
`ChannelUpdate` events are generated for each eligible channel.
Note that as currently implemented, a buggy and/or
auto-policy-management client could spam the network with updates as
there is no rate-limiting in place. This could already be done with
`broadcast_node_announcement`, though users are less inclined to update
that as frequently as its data is mostly static.
As we prepare to expose an API to update a channel's ChannelConfig,
we'll also want to expose this struct to consumers such that they have
insights into the current ChannelConfig applied for each channel.
ChannelConfig now has its static fields removed. We introduce a new
LegacyChannelConfig struct that maintains the serialization as
previously defined by ChannelConfig to remain backwards compatible with
clients running 0.0.107 and earlier.
As like the previous commit, `commit_upfront_shutdown_pubkey` is another
static field that cannot change after the initial channel handshake. We
therefore move it out from its existing place in `ChannelConfig`.