Remove event channel from lightning-net-tokio

It is unnecessary since ChannelManager has a notification interface as
of 12c735ab3a.
This commit is contained in:
Jeffrey Czyz 2021-05-18 16:06:13 -07:00
parent f63fd83fd6
commit a1f95de734
No known key found for this signature in database
GPG key ID: 3A4E08275D5E96D2

View file

@ -12,18 +12,16 @@
//! //!
//! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
//! TcpStream and a reference to a PeerManager and the rest is handled", except for the //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
//! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below. //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
//! //!
//! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
//! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor. //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
//! //!
//! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
//! their individual docs for more. All three take a //! their individual docs for details.
//! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time //!
//! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html). //! # Example
//! The call site should, thus, look something like this:
//! ``` //! ```
//! use tokio::sync::mpsc;
//! use std::net::TcpStream; //! use std::net::TcpStream;
//! use bitcoin::secp256k1::key::PublicKey; //! use bitcoin::secp256k1::key::PublicKey;
//! use lightning::util::events::{Event, EventHandler, EventsProvider}; //! use lightning::util::events::{Event, EventHandler, EventsProvider};
@ -43,32 +41,30 @@
//! //!
//! // Connect to node with pubkey their_node_id at addr: //! // Connect to node with pubkey their_node_id at addr:
//! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) { //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
//! let (sender, mut receiver) = mpsc::channel(2); //! lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
//! lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await; //! loop {
//! loop { //! channel_manager.await_persistable_update();
//! receiver.recv().await; //! channel_manager.process_pending_events(&|event| {
//! channel_manager.process_pending_events(&|event| { //! // Handle the event!
//! // Handle the event! //! });
//! }); //! chain_monitor.process_pending_events(&|event| {
//! chain_monitor.process_pending_events(&|event| { //! // Handle the event!
//! // Handle the event! //! });
//! }); //! }
//! }
//! } //! }
//! //!
//! // Begin reading from a newly accepted socket and talk to the peer: //! // Begin reading from a newly accepted socket and talk to the peer:
//! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) { //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
//! let (sender, mut receiver) = mpsc::channel(2); //! lightning_net_tokio::setup_inbound(peer_manager, socket);
//! lightning_net_tokio::setup_inbound(peer_manager, sender, socket); //! loop {
//! loop { //! channel_manager.await_persistable_update();
//! receiver.recv().await; //! channel_manager.process_pending_events(&|event| {
//! channel_manager.process_pending_events(&|event| { //! // Handle the event!
//! // Handle the event! //! });
//! }); //! chain_monitor.process_pending_events(&|event| {
//! chain_monitor.process_pending_events(&|event| { //! // Handle the event!
//! // Handle the event! //! });
//! }); //! }
//! }
//! } //! }
//! ``` //! ```
@ -90,7 +86,7 @@ use lightning::util::logger::Logger;
use std::{task, thread}; use std::{task, thread};
use std::net::SocketAddr; use std::net::SocketAddr;
use std::net::TcpStream as StdTcpStream; use std::net::TcpStream as StdTcpStream;
use std::sync::{Arc, Mutex, MutexGuard}; use std::sync::{Arc, Mutex};
use std::sync::atomic::{AtomicU64, Ordering}; use std::sync::atomic::{AtomicU64, Ordering};
use std::time::Duration; use std::time::Duration;
use std::hash::Hash; use std::hash::Hash;
@ -102,7 +98,6 @@ static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
/// read future (which is returned by schedule_read). /// read future (which is returned by schedule_read).
struct Connection { struct Connection {
writer: Option<io::WriteHalf<TcpStream>>, writer: Option<io::WriteHalf<TcpStream>>,
event_notify: mpsc::Sender<()>,
// Because our PeerManager is templated by user-provided types, and we can't (as far as I can // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
// tell) have a const RawWakerVTable built out of templated functions, we need some indirection // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
// between being woken up with write-ready and calling PeerManager::write_buffer_space_avail. // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
@ -129,21 +124,10 @@ struct Connection {
id: u64, id: u64,
} }
impl Connection { impl Connection {
fn event_trigger(us: &mut MutexGuard<Self>) {
match us.event_notify.try_send(()) {
Ok(_) => {},
Err(mpsc::error::TrySendError::Full(_)) => {
// Ignore full errors as we just need the user to poll after this point, so if they
// haven't received the last send yet, it doesn't matter.
},
_ => panic!()
}
}
async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
CMH: ChannelMessageHandler + 'static, CMH: ChannelMessageHandler + 'static,
RMH: RoutingMessageHandler + 'static, RMH: RoutingMessageHandler + 'static,
L: Logger + 'static + ?Sized { L: Logger + 'static + ?Sized {
let peer_manager_ref = peer_manager.clone();
// 8KB is nice and big but also should never cause any issues with stack overflowing. // 8KB is nice and big but also should never cause any issues with stack overflowing.
let mut buf = [0; 8192]; let mut buf = [0; 8192];
@ -201,7 +185,6 @@ impl Connection {
if pause_read { if pause_read {
us_lock.read_paused = true; us_lock.read_paused = true;
} }
Self::event_trigger(&mut us_lock);
}, },
Err(e) => shutdown_socket!(e, Disconnect::CloseConnection), Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
} }
@ -210,6 +193,7 @@ impl Connection {
Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected), Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
}, },
} }
peer_manager.process_events();
}; };
let writer_option = us.lock().unwrap().writer.take(); let writer_option = us.lock().unwrap().writer.take();
if let Some(mut writer) = writer_option { if let Some(mut writer) = writer_option {
@ -217,12 +201,12 @@ impl Connection {
let _ = writer.shutdown().await; let _ = writer.shutdown().await;
} }
if let Disconnect::PeerDisconnected = disconnect_type { if let Disconnect::PeerDisconnected = disconnect_type {
peer_manager_ref.socket_disconnected(&our_descriptor); peer_manager.socket_disconnected(&our_descriptor);
Self::event_trigger(&mut us.lock().unwrap()); peer_manager.process_events();
} }
} }
fn new(event_notify: mpsc::Sender<()>, stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) { fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
// We only ever need a channel of depth 1 here: if we returned a non-full write to the // We only ever need a channel of depth 1 here: if we returned a non-full write to the
// PeerManager, we will eventually get notified that there is room in the socket to write // PeerManager, we will eventually get notified that there is room in the socket to write
// new bytes, which will generate an event. That event will be popped off the queue before // new bytes, which will generate an event. That event will be popped off the queue before
@ -238,7 +222,7 @@ impl Connection {
(reader, write_receiver, read_receiver, (reader, write_receiver, read_receiver,
Arc::new(Mutex::new(Self { Arc::new(Mutex::new(Self {
writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false, writer: Some(writer), write_avail, read_waker, read_paused: false,
block_disconnect_socket: false, rl_requested_disconnect: false, block_disconnect_socket: false, rl_requested_disconnect: false,
id: ID_COUNTER.fetch_add(1, Ordering::AcqRel) id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
}))) })))
@ -251,13 +235,11 @@ impl Connection {
/// The returned future will complete when the peer is disconnected and associated handling /// The returned future will complete when the peer is disconnected and associated handling
/// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
/// not need to poll the provided future in order to make progress. /// not need to poll the provided future in order to make progress.
/// pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
/// See the module-level documentation for how to handle the event_notify mpsc::Sender.
pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
CMH: ChannelMessageHandler + 'static + Send + Sync, CMH: ChannelMessageHandler + 'static + Send + Sync,
RMH: RoutingMessageHandler + 'static + Send + Sync, RMH: RoutingMessageHandler + 'static + Send + Sync,
L: Logger + 'static + ?Sized + Send + Sync { L: Logger + 'static + ?Sized + Send + Sync {
let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream); let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
let last_us = Arc::clone(&us); let last_us = Arc::clone(&us);
@ -293,13 +275,11 @@ pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<So
/// The returned future will complete when the peer is disconnected and associated handling /// The returned future will complete when the peer is disconnected and associated handling
/// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
/// not need to poll the provided future in order to make progress. /// not need to poll the provided future in order to make progress.
/// pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
/// See the module-level documentation for how to handle the event_notify mpsc::Sender.
pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
CMH: ChannelMessageHandler + 'static + Send + Sync, CMH: ChannelMessageHandler + 'static + Send + Sync,
RMH: RoutingMessageHandler + 'static + Send + Sync, RMH: RoutingMessageHandler + 'static + Send + Sync,
L: Logger + 'static + ?Sized + Send + Sync { L: Logger + 'static + ?Sized + Send + Sync {
let (reader, mut write_receiver, read_receiver, us) = Connection::new(event_notify, stream); let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
let last_us = Arc::clone(&us); let last_us = Arc::clone(&us);
@ -365,14 +345,12 @@ pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<S
/// disconnected and associated handling futures are freed, though, because all processing in said /// disconnected and associated handling futures are freed, though, because all processing in said
/// futures are spawned with tokio::spawn, you do not need to poll the second future in order to /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
/// make progress. /// make progress.
/// pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
/// See the module-level documentation for how to handle the event_notify mpsc::Sender.
pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
CMH: ChannelMessageHandler + 'static + Send + Sync, CMH: ChannelMessageHandler + 'static + Send + Sync,
RMH: RoutingMessageHandler + 'static + Send + Sync, RMH: RoutingMessageHandler + 'static + Send + Sync,
L: Logger + 'static + ?Sized + Send + Sync { L: Logger + 'static + ?Sized + Send + Sync {
if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await { if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
Some(setup_outbound(peer_manager, event_notify, their_node_id, stream)) Some(setup_outbound(peer_manager, their_node_id, stream))
} else { None } } else { None }
} }
@ -634,9 +612,8 @@ mod tests {
(std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0) (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
} else { panic!("Failed to bind to v4 localhost on common ports"); }; } else { panic!("Failed to bind to v4 localhost on common ports"); };
let (sender, _receiver) = mpsc::channel(2); let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, conn_a); let fut_b = super::setup_inbound(b_manager, conn_b);
let fut_b = super::setup_inbound(b_manager, sender, conn_b);
tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap(); tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap(); tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();