Merge pull request #2290 from upjohnc/2240_replace_vectors_with_iterators

Set return type to Iterator for functions in file: `lightning-invoice/src/utils.rs` : issue #2240
This commit is contained in:
Jeffrey Czyz 2023-06-05 13:43:46 -05:00 committed by GitHub
commit 486c16a26d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -18,6 +18,7 @@ use lightning::util::logger::Logger;
use secp256k1::PublicKey; use secp256k1::PublicKey;
use core::ops::Deref; use core::ops::Deref;
use core::time::Duration; use core::time::Duration;
use core::iter::Iterator;
/// Utility to create an invoice that can be paid to one of multiple nodes, or a "phantom invoice." /// Utility to create an invoice that can be paid to one of multiple nodes, or a "phantom invoice."
/// See [`PhantomKeysManager`] for more information on phantom node payments. /// See [`PhantomKeysManager`] for more information on phantom node payments.
@ -132,6 +133,8 @@ where
) )
} }
const MAX_CHANNEL_HINTS: usize = 3;
fn _create_phantom_invoice<ES: Deref, NS: Deref, L: Deref>( fn _create_phantom_invoice<ES: Deref, NS: Deref, L: Deref>(
amt_msat: Option<u64>, payment_hash: Option<PaymentHash>, description: InvoiceDescription, amt_msat: Option<u64>, payment_hash: Option<PaymentHash>, description: InvoiceDescription,
invoice_expiry_delta_secs: u32, phantom_route_hints: Vec<PhantomRouteHints>, entropy_source: ES, invoice_expiry_delta_secs: u32, phantom_route_hints: Vec<PhantomRouteHints>, entropy_source: ES,
@ -202,7 +205,8 @@ where
invoice = invoice.amount_milli_satoshis(amt); invoice = invoice.amount_milli_satoshis(amt);
} }
for route_hint in select_phantom_hints(amt_msat, phantom_route_hints, logger) {
for route_hint in select_phantom_hints(amt_msat, phantom_route_hints, logger).take(MAX_CHANNEL_HINTS) {
invoice = invoice.private_route(route_hint); invoice = invoice.private_route(route_hint);
} }
@ -229,36 +233,48 @@ where
/// ///
/// [`PhantomKeysManager`]: lightning::sign::PhantomKeysManager /// [`PhantomKeysManager`]: lightning::sign::PhantomKeysManager
fn select_phantom_hints<L: Deref>(amt_msat: Option<u64>, phantom_route_hints: Vec<PhantomRouteHints>, fn select_phantom_hints<L: Deref>(amt_msat: Option<u64>, phantom_route_hints: Vec<PhantomRouteHints>,
logger: L) -> Vec<RouteHint> logger: L) -> impl Iterator<Item = RouteHint>
where where
L::Target: Logger, L::Target: Logger,
{ {
let mut phantom_hints: Vec<Vec<RouteHint>> = Vec::new(); let mut phantom_hints: Vec<_> = Vec::new();
for PhantomRouteHints { channels, phantom_scid, real_node_pubkey } in phantom_route_hints { for PhantomRouteHints { channels, phantom_scid, real_node_pubkey } in phantom_route_hints {
log_trace!(logger, "Generating phantom route hints for node {}", log_trace!(logger, "Generating phantom route hints for node {}",
log_pubkey!(real_node_pubkey)); log_pubkey!(real_node_pubkey));
let mut route_hints = sort_and_filter_channels(channels, amt_msat, &logger); let route_hints = sort_and_filter_channels(channels, amt_msat, &logger);
// If we have any public channel, the route hints from `sort_and_filter_channels` will be // If we have any public channel, the route hints from `sort_and_filter_channels` will be
// empty. In that case we create a RouteHint on which we will push a single hop with the // empty. In that case we create a RouteHint on which we will push a single hop with the
// phantom route into the invoice, and let the sender find the path to the `real_node_pubkey` // phantom route into the invoice, and let the sender find the path to the `real_node_pubkey`
// node by looking at our public channels. // node by looking at our public channels.
if route_hints.is_empty() { let empty_route_hints = route_hints.len() == 0;
route_hints.push(RouteHint(vec![])) let mut have_pushed_empty = false;
} let route_hints = route_hints
for route_hint in &mut route_hints { .chain(core::iter::from_fn(move || {
route_hint.0.push(RouteHintHop { if empty_route_hints && !have_pushed_empty {
src_node_id: real_node_pubkey, // set flag of having handled the empty route_hints and ensure empty vector
short_channel_id: phantom_scid, // returned only once
fees: RoutingFees { have_pushed_empty = true;
base_msat: 0, Some(RouteHint(Vec::new()))
proportional_millionths: 0, } else {
}, None
cltv_expiry_delta: MIN_CLTV_EXPIRY_DELTA, }
htlc_minimum_msat: None, }))
htlc_maximum_msat: None,}); .map(move |mut hint| {
} hint.0.push(RouteHintHop {
src_node_id: real_node_pubkey,
short_channel_id: phantom_scid,
fees: RoutingFees {
base_msat: 0,
proportional_millionths: 0,
},
cltv_expiry_delta: MIN_CLTV_EXPIRY_DELTA,
htlc_minimum_msat: None,
htlc_maximum_msat: None,
});
hint
});
phantom_hints.push(route_hints); phantom_hints.push(route_hints);
} }
@ -267,29 +283,34 @@ where
// the hints across our real nodes we add one hint from each in turn until no node has any hints // the hints across our real nodes we add one hint from each in turn until no node has any hints
// left (if one node has more hints than any other, these will accumulate at the end of the // left (if one node has more hints than any other, these will accumulate at the end of the
// vector). // vector).
let mut invoice_hints: Vec<RouteHint> = Vec::new(); rotate_through_iterators(phantom_hints)
let mut hint_idx = 0; }
loop { /// Draw items iteratively from multiple iterators. The items are retrieved by index and
let mut remaining_hints = false; /// rotates through the iterators - first the zero index then the first index then second index, etc.
fn rotate_through_iterators<T, I: Iterator<Item = T>>(mut vecs: Vec<I>) -> impl Iterator<Item = T> {
let mut iterations = 0;
for hints in phantom_hints.iter() { core::iter::from_fn(move || {
if invoice_hints.len() == 3 { let mut exhausted_iterators = 0;
return invoice_hints loop {
if vecs.is_empty() {
return None;
} }
let next_idx = iterations % vecs.len();
if hint_idx < hints.len() { iterations += 1;
invoice_hints.push(hints[hint_idx].clone()); if let Some(item) = vecs[next_idx].next() {
remaining_hints = true return Some(item);
}
// exhausted_vectors increase when the "next_idx" vector is exhausted
exhausted_iterators += 1;
// The check for exhausted iterators gets reset to 0 after each yield of `Some()`
// The loop will return None when all of the nested iterators are exhausted
if exhausted_iterators == vecs.len() {
return None;
} }
} }
})
if !remaining_hints {
return invoice_hints
}
hint_idx +=1;
}
} }
#[cfg(feature = "std")] #[cfg(feature = "std")]
@ -575,8 +596,13 @@ fn _create_invoice_from_channelmanager_and_duration_since_epoch_with_payment_has
/// * Sorted by lowest inbound capacity if an online channel with the minimum amount requested exists, /// * Sorted by lowest inbound capacity if an online channel with the minimum amount requested exists,
/// otherwise sort by highest inbound capacity to give the payment the best chance of succeeding. /// otherwise sort by highest inbound capacity to give the payment the best chance of succeeding.
fn sort_and_filter_channels<L: Deref>( fn sort_and_filter_channels<L: Deref>(
channels: Vec<ChannelDetails>, min_inbound_capacity_msat: Option<u64>, logger: &L channels: Vec<ChannelDetails>,
) -> Vec<RouteHint> where L::Target: Logger { min_inbound_capacity_msat: Option<u64>,
logger: &L,
) -> impl ExactSizeIterator<Item = RouteHint>
where
L::Target: Logger,
{
let mut filtered_channels: HashMap<PublicKey, ChannelDetails> = HashMap::new(); let mut filtered_channels: HashMap<PublicKey, ChannelDetails> = HashMap::new();
let min_inbound_capacity = min_inbound_capacity_msat.unwrap_or(0); let min_inbound_capacity = min_inbound_capacity_msat.unwrap_or(0);
let mut min_capacity_channel_exists = false; let mut min_capacity_channel_exists = false;
@ -584,6 +610,20 @@ fn sort_and_filter_channels<L: Deref>(
let mut online_min_capacity_channel_exists = false; let mut online_min_capacity_channel_exists = false;
let mut has_pub_unconf_chan = false; let mut has_pub_unconf_chan = false;
let route_hint_from_channel = |channel: ChannelDetails| {
let forwarding_info = channel.counterparty.forwarding_info.as_ref().unwrap();
RouteHint(vec![RouteHintHop {
src_node_id: channel.counterparty.node_id,
short_channel_id: channel.get_inbound_payment_scid().unwrap(),
fees: RoutingFees {
base_msat: forwarding_info.fee_base_msat,
proportional_millionths: forwarding_info.fee_proportional_millionths,
},
cltv_expiry_delta: forwarding_info.cltv_expiry_delta,
htlc_minimum_msat: channel.inbound_htlc_minimum_msat,
htlc_maximum_msat: channel.inbound_htlc_maximum_msat,}])
};
log_trace!(logger, "Considering {} channels for invoice route hints", channels.len()); log_trace!(logger, "Considering {} channels for invoice route hints", channels.len());
for channel in channels.into_iter().filter(|chan| chan.is_channel_ready) { for channel in channels.into_iter().filter(|chan| chan.is_channel_ready) {
if channel.get_inbound_payment_scid().is_none() || channel.counterparty.forwarding_info.is_none() { if channel.get_inbound_payment_scid().is_none() || channel.counterparty.forwarding_info.is_none() {
@ -602,7 +642,7 @@ fn sort_and_filter_channels<L: Deref>(
// look at the public channels instead. // look at the public channels instead.
log_trace!(logger, "Not including channels in invoice route hints on account of public channel {}", log_trace!(logger, "Not including channels in invoice route hints on account of public channel {}",
log_bytes!(channel.channel_id)); log_bytes!(channel.channel_id));
return vec![] return vec![].into_iter().take(MAX_CHANNEL_HINTS).map(route_hint_from_channel);
} }
} }
@ -662,19 +702,6 @@ fn sort_and_filter_channels<L: Deref>(
} }
} }
let route_hint_from_channel = |channel: ChannelDetails| {
let forwarding_info = channel.counterparty.forwarding_info.as_ref().unwrap();
RouteHint(vec![RouteHintHop {
src_node_id: channel.counterparty.node_id,
short_channel_id: channel.get_inbound_payment_scid().unwrap(),
fees: RoutingFees {
base_msat: forwarding_info.fee_base_msat,
proportional_millionths: forwarding_info.fee_proportional_millionths,
},
cltv_expiry_delta: forwarding_info.cltv_expiry_delta,
htlc_minimum_msat: channel.inbound_htlc_minimum_msat,
htlc_maximum_msat: channel.inbound_htlc_maximum_msat,}])
};
// If all channels are private, prefer to return route hints which have a higher capacity than // If all channels are private, prefer to return route hints which have a higher capacity than
// the payment value and where we're currently connected to the channel counterparty. // the payment value and where we're currently connected to the channel counterparty.
// Even if we cannot satisfy both goals, always ensure we include *some* hints, preferring // Even if we cannot satisfy both goals, always ensure we include *some* hints, preferring
@ -724,7 +751,8 @@ fn sort_and_filter_channels<L: Deref>(
} else { } else {
b.inbound_capacity_msat.cmp(&a.inbound_capacity_msat) b.inbound_capacity_msat.cmp(&a.inbound_capacity_msat)
}}); }});
eligible_channels.into_iter().take(3).map(route_hint_from_channel).collect::<Vec<RouteHint>>()
eligible_channels.into_iter().take(MAX_CHANNEL_HINTS).map(route_hint_from_channel)
} }
/// prefer_current_channel chooses a channel to use for route hints between a currently selected and candidate /// prefer_current_channel chooses a channel to use for route hints between a currently selected and candidate
@ -777,7 +805,7 @@ mod test {
use lightning::routing::router::{PaymentParameters, RouteParameters}; use lightning::routing::router::{PaymentParameters, RouteParameters};
use lightning::util::test_utils; use lightning::util::test_utils;
use lightning::util::config::UserConfig; use lightning::util::config::UserConfig;
use crate::utils::create_invoice_from_channelmanager_and_duration_since_epoch; use crate::utils::{create_invoice_from_channelmanager_and_duration_since_epoch, rotate_through_iterators};
use std::collections::HashSet; use std::collections::HashSet;
#[test] #[test]
@ -1886,4 +1914,111 @@ mod test {
_ => panic!(), _ => panic!(),
} }
} }
#[test]
fn test_rotate_through_iterators() {
// two nested vectors
let a = vec![vec!["a0", "b0", "c0"].into_iter(), vec!["a1", "b1"].into_iter()];
let result = rotate_through_iterators(a).collect::<Vec<_>>();
let expected = vec!["a0", "a1", "b0", "b1", "c0"];
assert_eq!(expected, result);
// test single nested vector
let a = vec![vec!["a0", "b0", "c0"].into_iter()];
let result = rotate_through_iterators(a).collect::<Vec<_>>();
let expected = vec!["a0", "b0", "c0"];
assert_eq!(expected, result);
// test second vector with only one element
let a = vec![vec!["a0", "b0", "c0"].into_iter(), vec!["a1"].into_iter()];
let result = rotate_through_iterators(a).collect::<Vec<_>>();
let expected = vec!["a0", "a1", "b0", "c0"];
assert_eq!(expected, result);
// test three nestend vectors
let a = vec![vec!["a0"].into_iter(), vec!["a1", "b1", "c1"].into_iter(), vec!["a2"].into_iter()];
let result = rotate_through_iterators(a).collect::<Vec<_>>();
let expected = vec!["a0", "a1", "a2", "b1", "c1"];
assert_eq!(expected, result);
// test single nested vector with a single value
let a = vec![vec!["a0"].into_iter()];
let result = rotate_through_iterators(a).collect::<Vec<_>>();
let expected = vec!["a0"];
assert_eq!(expected, result);
// test single empty nested vector
let a:Vec<std::vec::IntoIter<&str>> = vec![vec![].into_iter()];
let result = rotate_through_iterators(a).collect::<Vec<&str>>();
let expected:Vec<&str> = vec![];
assert_eq!(expected, result);
// test first nested vector is empty
let a:Vec<std::vec::IntoIter<&str>>= vec![vec![].into_iter(), vec!["a1", "b1", "c1"].into_iter()];
let result = rotate_through_iterators(a).collect::<Vec<&str>>();
let expected = vec!["a1", "b1", "c1"];
assert_eq!(expected, result);
// test two empty vectors
let a:Vec<std::vec::IntoIter<&str>> = vec![vec![].into_iter(), vec![].into_iter()];
let result = rotate_through_iterators(a).collect::<Vec<&str>>();
let expected:Vec<&str> = vec![];
assert_eq!(expected, result);
// test an empty vector amongst other filled vectors
let a = vec![
vec!["a0", "b0", "c0"].into_iter(),
vec![].into_iter(),
vec!["a1", "b1", "c1"].into_iter(),
vec!["a2", "b2", "c2"].into_iter(),
];
let result = rotate_through_iterators(a).collect::<Vec<_>>();
let expected = vec!["a0", "a1", "a2", "b0", "b1", "b2", "c0", "c1", "c2"];
assert_eq!(expected, result);
// test a filled vector between two empty vectors
let a = vec![vec![].into_iter(), vec!["a1", "b1", "c1"].into_iter(), vec![].into_iter()];
let result = rotate_through_iterators(a).collect::<Vec<_>>();
let expected = vec!["a1", "b1", "c1"];
assert_eq!(expected, result);
// test an empty vector at the end of the vectors
let a = vec![vec!["a0", "b0", "c0"].into_iter(), vec![].into_iter()];
let result = rotate_through_iterators(a).collect::<Vec<_>>();
let expected = vec!["a0", "b0", "c0"];
assert_eq!(expected, result);
// test multiple empty vectors amongst multiple filled vectors
let a = vec![
vec![].into_iter(),
vec!["a1", "b1", "c1"].into_iter(),
vec![].into_iter(),
vec!["a3", "b3"].into_iter(),
vec![].into_iter(),
];
let result = rotate_through_iterators(a).collect::<Vec<_>>();
let expected = vec!["a1", "a3", "b1", "b3", "c1"];
assert_eq!(expected, result);
// test one element in the first nested vectore and two elements in the second nested
// vector
let a = vec![vec!["a0"].into_iter(), vec!["a1", "b1"].into_iter()];
let result = rotate_through_iterators(a).collect::<Vec<_>>();
let expected = vec!["a0", "a1", "b1"];
assert_eq!(expected, result);
}
} }