Decay channel liquidity balance offsets

ProbabilisticScorer uses successful and unsuccessful payments to gain
more certainty of a channel's liquidity balance. Decay this knowledge
over time to indicate decreasing certainty about the liquidity balance.
This commit is contained in:
Jeffrey Czyz 2022-01-04 18:15:59 -06:00
parent 68d791ad84
commit 2e730cdc9c
No known key found for this signature in database
GPG key ID: 3A4E08275D5E96D2

View file

@ -189,16 +189,6 @@ impl<'a, S: Writeable> Writeable for MutexGuard<'a, S> {
} }
} }
/// [`Score`] implementation that provides reasonable default behavior.
///
/// Used to apply a fixed penalty to each channel, thus avoiding long paths when shorter paths with
/// slightly higher fees are available. Will further penalize channels that fail to relay payments.
///
/// See [module-level documentation] for usage.
///
/// [module-level documentation]: crate::routing::scoring
#[cfg(not(feature = "no-std"))]
pub type Scorer = ScorerUsingTime::<std::time::Instant>;
/// [`Score`] implementation that provides reasonable default behavior. /// [`Score`] implementation that provides reasonable default behavior.
/// ///
/// Used to apply a fixed penalty to each channel, thus avoiding long paths when shorter paths with /// Used to apply a fixed penalty to each channel, thus avoiding long paths when shorter paths with
@ -206,9 +196,18 @@ pub type Scorer = ScorerUsingTime::<std::time::Instant>;
/// ///
/// See [module-level documentation] for usage and [`ScoringParameters`] for customization. /// See [module-level documentation] for usage and [`ScoringParameters`] for customization.
/// ///
/// # Note
///
/// Mixing the `no-std` feature between serialization and deserialization results in undefined
/// behavior.
///
/// [module-level documentation]: crate::routing::scoring /// [module-level documentation]: crate::routing::scoring
pub type Scorer = ScorerUsingTime::<ConfiguredTime>;
#[cfg(not(feature = "no-std"))]
type ConfiguredTime = std::time::Instant;
#[cfg(feature = "no-std")] #[cfg(feature = "no-std")]
pub type Scorer = ScorerUsingTime::<time::Eternity>; type ConfiguredTime = time::Eternity;
// Note that ideally we'd hide ScorerUsingTime from public view by sealing it as well, but rustdoc // Note that ideally we'd hide ScorerUsingTime from public view by sealing it as well, but rustdoc
// doesn't handle this well - instead exposing a `Scorer` which has no trait implementation(s) or // doesn't handle this well - instead exposing a `Scorer` which has no trait implementation(s) or
@ -216,14 +215,8 @@ pub type Scorer = ScorerUsingTime::<time::Eternity>;
/// [`Score`] implementation. /// [`Score`] implementation.
/// ///
/// See [`Scorer`] for details.
///
/// # Note
///
/// Mixing the `no-std` feature between serialization and deserialization results in undefined
/// behavior.
///
/// (C-not exported) generally all users should use the [`Scorer`] type alias. /// (C-not exported) generally all users should use the [`Scorer`] type alias.
#[doc(hidden)]
pub struct ScorerUsingTime<T: Time> { pub struct ScorerUsingTime<T: Time> {
params: ScoringParameters, params: ScoringParameters,
// TODO: Remove entries of closed channels. // TODO: Remove entries of closed channels.
@ -269,6 +262,8 @@ pub struct ScoringParameters {
/// ///
/// Successfully routing through a channel will immediately cut the penalty in half as well. /// Successfully routing through a channel will immediately cut the penalty in half as well.
/// ///
/// Default value: 1 hour
///
/// # Note /// # Note
/// ///
/// When built with the `no-std` feature, time will never elapse. Therefore, this penalty will /// When built with the `no-std` feature, time will never elapse. Therefore, this penalty will
@ -461,30 +456,70 @@ impl<T: Time> Readable for ChannelFailure<T> {
/// Then the negative `log10` of the success probability is used to determine the cost of routing a /// Then the negative `log10` of the success probability is used to determine the cost of routing a
/// specific HTLC amount through a channel. /// specific HTLC amount through a channel.
/// ///
/// Knowledge about channel liquidity balances takes the form of upper and lower bounds on the
/// possible liquidity. Certainty of the bounds is decreased over time using a decay function. See
/// [`ProbabilisticScoringParameters`] for details.
///
/// Since the scorer aims to learn the current channel liquidity balances, it works best for nodes
/// with high payment volume or that actively probe the [`NetworkGraph`]. Nodes with low payment
/// volume are more likely to experience failed payment paths, which would need to be retried.
///
/// # Note
///
/// Mixing the `no-std` feature between serialization and deserialization results in undefined
/// behavior.
///
/// [1]: https://arxiv.org/abs/2107.05322 /// [1]: https://arxiv.org/abs/2107.05322
pub struct ProbabilisticScorer<G: Deref<Target = NetworkGraph>> { pub type ProbabilisticScorer<G> = ProbabilisticScorerUsingTime::<G, ConfiguredTime>;
/// Probabilistic [`Score`] implementation.
///
/// (C-not exported) generally all users should use the [`ProbabilisticScorer`] type alias.
#[doc(hidden)]
pub struct ProbabilisticScorerUsingTime<G: Deref<Target = NetworkGraph>, T: Time> {
params: ProbabilisticScoringParameters, params: ProbabilisticScoringParameters,
network_graph: G, network_graph: G,
// TODO: Remove entries of closed channels. // TODO: Remove entries of closed channels.
channel_liquidities: HashMap<u64, ChannelLiquidity>, channel_liquidities: HashMap<u64, ChannelLiquidity<T>>,
} }
/// Parameters for configuring [`ProbabilisticScorer`]. /// Parameters for configuring [`ProbabilisticScorer`].
#[derive(Clone, Copy)]
pub struct ProbabilisticScoringParameters { pub struct ProbabilisticScoringParameters {
/// A penalty applied after multiplying by the negative `log10` of the channel's success /// A multiplier used to determine the amount in msats willing to be paid to avoid routing
/// through a channel, as per multiplying by the negative `log10` of the channel's success
/// probability for a payment. /// probability for a payment.
/// ///
/// The success probability is determined by the effective channel capacity, the payment amount, /// The success probability is determined by the effective channel capacity, the payment amount,
/// and knowledge learned from prior successful and unsuccessful payments. The lower bound of /// and knowledge learned from prior successful and unsuccessful payments. The lower bound of
/// the success probability is 0.01, effectively limiting the penalty to the range /// the success probability is 0.01, effectively limiting the penalty to the range
/// `0..=2*liquidity_penalty_multiplier_msat`. /// `0..=2*liquidity_penalty_multiplier_msat`. The knowledge learned is decayed over time based
/// on [`liquidity_offset_half_life`].
/// ///
/// Default value: 10,000 msat /// Default value: 10,000 msat
///
/// [`liquidity_offset_half_life`]: Self::liquidity_offset_half_life
pub liquidity_penalty_multiplier_msat: u64, pub liquidity_penalty_multiplier_msat: u64,
/// The time required to elapse before any knowledge learned about channel liquidity balances is
/// cut in half.
///
/// The bounds are defined in terms of offsets and are initially zero. Increasing the offsets
/// gives tighter bounds on the channel liquidity balance. Thus, halving the offsets decreases
/// the certainty of the channel liquidity balance.
///
/// Default value: 1 hour
///
/// # Note
///
/// When built with the `no-std` feature, time will never elapse. Therefore, the channel
/// liquidity knowledge will never decay except when the bounds cross.
pub liquidity_offset_half_life: Duration,
} }
impl_writeable_tlv_based!(ProbabilisticScoringParameters, { impl_writeable_tlv_based!(ProbabilisticScoringParameters, {
(0, liquidity_penalty_multiplier_msat, required), (0, liquidity_penalty_multiplier_msat, required),
(2, liquidity_offset_half_life, required),
}); });
/// Accounting for channel liquidity balance uncertainty. /// Accounting for channel liquidity balance uncertainty.
@ -492,22 +527,29 @@ impl_writeable_tlv_based!(ProbabilisticScoringParameters, {
/// Direction is defined in terms of [`NodeId`] partial ordering, where the source node is the /// Direction is defined in terms of [`NodeId`] partial ordering, where the source node is the
/// first node in the ordering of the channel's counterparties. Thus, swapping the two liquidity /// first node in the ordering of the channel's counterparties. Thus, swapping the two liquidity
/// offset fields gives the opposite direction. /// offset fields gives the opposite direction.
struct ChannelLiquidity { struct ChannelLiquidity<T: Time> {
/// Lower channel liquidity bound in terms of an offset from zero. /// Lower channel liquidity bound in terms of an offset from zero.
min_liquidity_offset_msat: u64, min_liquidity_offset_msat: u64,
/// Upper channel liquidity bound in terms of an offset from the effective capacity. /// Upper channel liquidity bound in terms of an offset from the effective capacity.
max_liquidity_offset_msat: u64, max_liquidity_offset_msat: u64,
/// Time when the liquidity bounds were last modified.
last_updated: T,
} }
/// A view of [`ChannelLiquidity`] in one direction assuming a certain channel capacity. /// A snapshot of [`ChannelLiquidity`] in one direction assuming a certain channel capacity and
struct DirectedChannelLiquidity<L: Deref<Target = u64>> { /// decayed with a given half life.
struct DirectedChannelLiquidity<L: Deref<Target = u64>, T: Time, U: Deref<Target = T>> {
min_liquidity_offset_msat: L, min_liquidity_offset_msat: L,
max_liquidity_offset_msat: L, max_liquidity_offset_msat: L,
capacity_msat: u64, capacity_msat: u64,
last_updated: U,
now: T,
half_life: Duration,
} }
impl<G: Deref<Target = NetworkGraph>> ProbabilisticScorer<G> { impl<G: Deref<Target = NetworkGraph>, T: Time> ProbabilisticScorerUsingTime<G, T> {
/// Creates a new scorer using the given scoring parameters for sending payments from a node /// Creates a new scorer using the given scoring parameters for sending payments from a node
/// through a network graph. /// through a network graph.
pub fn new(params: ProbabilisticScoringParameters, network_graph: G) -> Self { pub fn new(params: ProbabilisticScoringParameters, network_graph: G) -> Self {
@ -519,7 +561,7 @@ impl<G: Deref<Target = NetworkGraph>> ProbabilisticScorer<G> {
} }
#[cfg(test)] #[cfg(test)]
fn with_channel(mut self, short_channel_id: u64, liquidity: ChannelLiquidity) -> Self { fn with_channel(mut self, short_channel_id: u64, liquidity: ChannelLiquidity<T>) -> Self {
assert!(self.channel_liquidities.insert(short_channel_id, liquidity).is_none()); assert!(self.channel_liquidities.insert(short_channel_id, liquidity).is_none());
self self
} }
@ -529,24 +571,26 @@ impl Default for ProbabilisticScoringParameters {
fn default() -> Self { fn default() -> Self {
Self { Self {
liquidity_penalty_multiplier_msat: 10_000, liquidity_penalty_multiplier_msat: 10_000,
liquidity_offset_half_life: Duration::from_secs(3600),
} }
} }
} }
impl ChannelLiquidity { impl<T: Time> ChannelLiquidity<T> {
#[inline] #[inline]
fn new() -> Self { fn new() -> Self {
Self { Self {
min_liquidity_offset_msat: 0, min_liquidity_offset_msat: 0,
max_liquidity_offset_msat: 0, max_liquidity_offset_msat: 0,
last_updated: T::now(),
} }
} }
/// Returns a view of the channel liquidity directed from `source` to `target` assuming /// Returns a view of the channel liquidity directed from `source` to `target` assuming
/// `capacity_msat`. /// `capacity_msat`.
fn as_directed( fn as_directed(
&self, source: &NodeId, target: &NodeId, capacity_msat: u64 &self, source: &NodeId, target: &NodeId, capacity_msat: u64, half_life: Duration
) -> DirectedChannelLiquidity<&u64> { ) -> DirectedChannelLiquidity<&u64, T, &T> {
let (min_liquidity_offset_msat, max_liquidity_offset_msat) = if source < target { let (min_liquidity_offset_msat, max_liquidity_offset_msat) = if source < target {
(&self.min_liquidity_offset_msat, &self.max_liquidity_offset_msat) (&self.min_liquidity_offset_msat, &self.max_liquidity_offset_msat)
} else { } else {
@ -557,14 +601,17 @@ impl ChannelLiquidity {
min_liquidity_offset_msat, min_liquidity_offset_msat,
max_liquidity_offset_msat, max_liquidity_offset_msat,
capacity_msat, capacity_msat,
last_updated: &self.last_updated,
now: T::now(),
half_life,
} }
} }
/// Returns a mutable view of the channel liquidity directed from `source` to `target` assuming /// Returns a mutable view of the channel liquidity directed from `source` to `target` assuming
/// `capacity_msat`. /// `capacity_msat`.
fn as_directed_mut( fn as_directed_mut(
&mut self, source: &NodeId, target: &NodeId, capacity_msat: u64 &mut self, source: &NodeId, target: &NodeId, capacity_msat: u64, half_life: Duration
) -> DirectedChannelLiquidity<&mut u64> { ) -> DirectedChannelLiquidity<&mut u64, T, &mut T> {
let (min_liquidity_offset_msat, max_liquidity_offset_msat) = if source < target { let (min_liquidity_offset_msat, max_liquidity_offset_msat) = if source < target {
(&mut self.min_liquidity_offset_msat, &mut self.max_liquidity_offset_msat) (&mut self.min_liquidity_offset_msat, &mut self.max_liquidity_offset_msat)
} else { } else {
@ -575,11 +622,14 @@ impl ChannelLiquidity {
min_liquidity_offset_msat, min_liquidity_offset_msat,
max_liquidity_offset_msat, max_liquidity_offset_msat,
capacity_msat, capacity_msat,
last_updated: &mut self.last_updated,
now: T::now(),
half_life,
} }
} }
} }
impl<L: Deref<Target = u64>> DirectedChannelLiquidity<L> { impl<L: Deref<Target = u64>, T: Time, U: Deref<Target = T>> DirectedChannelLiquidity<L, T, U> {
/// Returns the success probability of routing the given HTLC `amount_msat` through the channel /// Returns the success probability of routing the given HTLC `amount_msat` through the channel
/// in this direction. /// in this direction.
fn success_probability(&self, amount_msat: u64) -> f64 { fn success_probability(&self, amount_msat: u64) -> f64 {
@ -598,16 +648,25 @@ impl<L: Deref<Target = u64>> DirectedChannelLiquidity<L> {
/// Returns the lower bound of the channel liquidity balance in this direction. /// Returns the lower bound of the channel liquidity balance in this direction.
fn min_liquidity_msat(&self) -> u64 { fn min_liquidity_msat(&self) -> u64 {
*self.min_liquidity_offset_msat self.decayed_offset_msat(*self.min_liquidity_offset_msat)
} }
/// Returns the upper bound of the channel liquidity balance in this direction. /// Returns the upper bound of the channel liquidity balance in this direction.
fn max_liquidity_msat(&self) -> u64 { fn max_liquidity_msat(&self) -> u64 {
self.capacity_msat.checked_sub(*self.max_liquidity_offset_msat).unwrap_or(0) self.capacity_msat
.checked_sub(self.decayed_offset_msat(*self.max_liquidity_offset_msat))
.unwrap_or(0)
}
fn decayed_offset_msat(&self, offset_msat: u64) -> u64 {
self.now.duration_since(*self.last_updated).as_secs()
.checked_div(self.half_life.as_secs())
.and_then(|decays| offset_msat.checked_shr(decays as u32))
.unwrap_or(0)
} }
} }
impl<L: DerefMut<Target = u64>> DirectedChannelLiquidity<L> { impl<L: DerefMut<Target = u64>, T: Time, U: DerefMut<Target = T>> DirectedChannelLiquidity<L, T, U> {
/// Adjusts the channel liquidity balance bounds when failing to route `amount_msat`. /// Adjusts the channel liquidity balance bounds when failing to route `amount_msat`.
fn failed_at_channel(&mut self, amount_msat: u64) { fn failed_at_channel(&mut self, amount_msat: u64) {
if amount_msat < self.max_liquidity_msat() { if amount_msat < self.max_liquidity_msat() {
@ -631,32 +690,37 @@ impl<L: DerefMut<Target = u64>> DirectedChannelLiquidity<L> {
/// Adjusts the lower bound of the channel liquidity balance in this direction. /// Adjusts the lower bound of the channel liquidity balance in this direction.
fn set_min_liquidity_msat(&mut self, amount_msat: u64) { fn set_min_liquidity_msat(&mut self, amount_msat: u64) {
*self.min_liquidity_offset_msat = amount_msat; *self.min_liquidity_offset_msat = amount_msat;
*self.max_liquidity_offset_msat = if amount_msat > self.max_liquidity_msat() {
if amount_msat > self.max_liquidity_msat() { 0
*self.max_liquidity_offset_msat = 0; } else {
} self.decayed_offset_msat(*self.max_liquidity_offset_msat)
};
*self.last_updated = self.now;
} }
/// Adjusts the upper bound of the channel liquidity balance in this direction. /// Adjusts the upper bound of the channel liquidity balance in this direction.
fn set_max_liquidity_msat(&mut self, amount_msat: u64) { fn set_max_liquidity_msat(&mut self, amount_msat: u64) {
*self.max_liquidity_offset_msat = self.capacity_msat.checked_sub(amount_msat).unwrap_or(0); *self.max_liquidity_offset_msat = self.capacity_msat.checked_sub(amount_msat).unwrap_or(0);
*self.min_liquidity_offset_msat = if amount_msat < self.min_liquidity_msat() {
if amount_msat < self.min_liquidity_msat() { 0
*self.min_liquidity_offset_msat = 0; } else {
} self.decayed_offset_msat(*self.min_liquidity_offset_msat)
};
*self.last_updated = self.now;
} }
} }
impl<G: Deref<Target = NetworkGraph>> Score for ProbabilisticScorer<G> { impl<G: Deref<Target = NetworkGraph>, T: Time> Score for ProbabilisticScorerUsingTime<G, T> {
fn channel_penalty_msat( fn channel_penalty_msat(
&self, short_channel_id: u64, amount_msat: u64, capacity_msat: u64, source: &NodeId, &self, short_channel_id: u64, amount_msat: u64, capacity_msat: u64, source: &NodeId,
target: &NodeId target: &NodeId
) -> u64 { ) -> u64 {
let liquidity_penalty_multiplier_msat = self.params.liquidity_penalty_multiplier_msat; let liquidity_penalty_multiplier_msat = self.params.liquidity_penalty_multiplier_msat;
let liquidity_offset_half_life = self.params.liquidity_offset_half_life;
let success_probability = self.channel_liquidities let success_probability = self.channel_liquidities
.get(&short_channel_id) .get(&short_channel_id)
.unwrap_or(&ChannelLiquidity::new()) .unwrap_or(&ChannelLiquidity::new())
.as_directed(source, target, capacity_msat) .as_directed(source, target, capacity_msat, liquidity_offset_half_life)
.success_probability(amount_msat); .success_probability(amount_msat);
// NOTE: If success_probability is ever changed to return 0.0, log10 is undefined so return // NOTE: If success_probability is ever changed to return 0.0, log10 is undefined so return
// u64::max_value instead. // u64::max_value instead.
@ -666,6 +730,7 @@ impl<G: Deref<Target = NetworkGraph>> Score for ProbabilisticScorer<G> {
fn payment_path_failed(&mut self, path: &[&RouteHop], short_channel_id: u64) { fn payment_path_failed(&mut self, path: &[&RouteHop], short_channel_id: u64) {
let amount_msat = path.split_last().map(|(hop, _)| hop.fee_msat).unwrap_or(0); let amount_msat = path.split_last().map(|(hop, _)| hop.fee_msat).unwrap_or(0);
let liquidity_offset_half_life = self.params.liquidity_offset_half_life;
let network_graph = self.network_graph.read_only(); let network_graph = self.network_graph.read_only();
for hop in path { for hop in path {
let target = NodeId::from_pubkey(&hop.pubkey); let target = NodeId::from_pubkey(&hop.pubkey);
@ -680,7 +745,7 @@ impl<G: Deref<Target = NetworkGraph>> Score for ProbabilisticScorer<G> {
self.channel_liquidities self.channel_liquidities
.entry(hop.short_channel_id) .entry(hop.short_channel_id)
.or_insert_with(ChannelLiquidity::new) .or_insert_with(ChannelLiquidity::new)
.as_directed_mut(source, &target, capacity_msat) .as_directed_mut(source, &target, capacity_msat, liquidity_offset_half_life)
.failed_at_channel(amount_msat); .failed_at_channel(amount_msat);
break; break;
} }
@ -688,7 +753,7 @@ impl<G: Deref<Target = NetworkGraph>> Score for ProbabilisticScorer<G> {
self.channel_liquidities self.channel_liquidities
.entry(hop.short_channel_id) .entry(hop.short_channel_id)
.or_insert_with(ChannelLiquidity::new) .or_insert_with(ChannelLiquidity::new)
.as_directed_mut(source, &target, capacity_msat) .as_directed_mut(source, &target, capacity_msat, liquidity_offset_half_life)
.failed_downstream(amount_msat); .failed_downstream(amount_msat);
} }
} }
@ -696,6 +761,7 @@ impl<G: Deref<Target = NetworkGraph>> Score for ProbabilisticScorer<G> {
fn payment_path_successful(&mut self, path: &[&RouteHop]) { fn payment_path_successful(&mut self, path: &[&RouteHop]) {
let amount_msat = path.split_last().map(|(hop, _)| hop.fee_msat).unwrap_or(0); let amount_msat = path.split_last().map(|(hop, _)| hop.fee_msat).unwrap_or(0);
let liquidity_offset_half_life = self.params.liquidity_offset_half_life;
let network_graph = self.network_graph.read_only(); let network_graph = self.network_graph.read_only();
for hop in path { for hop in path {
let target = NodeId::from_pubkey(&hop.pubkey); let target = NodeId::from_pubkey(&hop.pubkey);
@ -709,14 +775,14 @@ impl<G: Deref<Target = NetworkGraph>> Score for ProbabilisticScorer<G> {
self.channel_liquidities self.channel_liquidities
.entry(hop.short_channel_id) .entry(hop.short_channel_id)
.or_insert_with(ChannelLiquidity::new) .or_insert_with(ChannelLiquidity::new)
.as_directed_mut(source, &target, capacity_msat) .as_directed_mut(source, &target, capacity_msat, liquidity_offset_half_life)
.successful(amount_msat); .successful(amount_msat);
} }
} }
} }
} }
impl<G: Deref<Target = NetworkGraph>> Writeable for ProbabilisticScorer<G> { impl<G: Deref<Target = NetworkGraph>, T: Time> Writeable for ProbabilisticScorerUsingTime<G, T> {
#[inline] #[inline]
fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> { fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
write_tlv_fields!(w, { write_tlv_fields!(w, {
@ -726,8 +792,11 @@ impl<G: Deref<Target = NetworkGraph>> Writeable for ProbabilisticScorer<G> {
} }
} }
impl<G: Deref<Target = NetworkGraph>> ReadableArgs<(ProbabilisticScoringParameters, G)> impl<G, T> ReadableArgs<(ProbabilisticScoringParameters, G)> for ProbabilisticScorerUsingTime<G, T>
for ProbabilisticScorer<G> { where
G: Deref<Target = NetworkGraph>,
T: Time,
{
#[inline] #[inline]
fn read<R: Read>( fn read<R: Read>(
r: &mut R, args: (ProbabilisticScoringParameters, G) r: &mut R, args: (ProbabilisticScoringParameters, G)
@ -745,29 +814,34 @@ for ProbabilisticScorer<G> {
} }
} }
impl Writeable for ChannelLiquidity { impl<T: Time> Writeable for ChannelLiquidity<T> {
#[inline] #[inline]
fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> { fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
let duration_since_epoch = T::duration_since_epoch() - self.last_updated.elapsed();
write_tlv_fields!(w, { write_tlv_fields!(w, {
(0, self.min_liquidity_offset_msat, required), (0, self.min_liquidity_offset_msat, required),
(2, self.max_liquidity_offset_msat, required), (2, self.max_liquidity_offset_msat, required),
(4, duration_since_epoch, required),
}); });
Ok(()) Ok(())
} }
} }
impl Readable for ChannelLiquidity { impl<T: Time> Readable for ChannelLiquidity<T> {
#[inline] #[inline]
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> { fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let mut min_liquidity_offset_msat = 0; let mut min_liquidity_offset_msat = 0;
let mut max_liquidity_offset_msat = 0; let mut max_liquidity_offset_msat = 0;
let mut duration_since_epoch = Duration::from_secs(0);
read_tlv_fields!(r, { read_tlv_fields!(r, {
(0, min_liquidity_offset_msat, required), (0, min_liquidity_offset_msat, required),
(2, max_liquidity_offset_msat, required), (2, max_liquidity_offset_msat, required),
(4, duration_since_epoch, required),
}); });
Ok(Self { Ok(Self {
min_liquidity_offset_msat, min_liquidity_offset_msat,
max_liquidity_offset_msat max_liquidity_offset_msat,
last_updated: T::now() - (T::duration_since_epoch() - duration_since_epoch),
}) })
} }
} }
@ -776,13 +850,16 @@ pub(crate) mod time {
use core::ops::Sub; use core::ops::Sub;
use core::time::Duration; use core::time::Duration;
/// A measurement of time. /// A measurement of time.
pub trait Time: Sub<Duration, Output = Self> where Self: Sized { pub trait Time: Copy + Sub<Duration, Output = Self> where Self: Sized {
/// Returns an instance corresponding to the current moment. /// Returns an instance corresponding to the current moment.
fn now() -> Self; fn now() -> Self;
/// Returns the amount of time elapsed since `self` was created. /// Returns the amount of time elapsed since `self` was created.
fn elapsed(&self) -> Duration; fn elapsed(&self) -> Duration;
/// Returns the amount of time passed between `earlier` and `self`.
fn duration_since(&self, earlier: Self) -> Duration;
/// Returns the amount of time passed since the beginning of [`Time`]. /// Returns the amount of time passed since the beginning of [`Time`].
/// ///
/// Used during (de-)serialization. /// Used during (de-)serialization.
@ -790,7 +867,7 @@ pub(crate) mod time {
} }
/// A state in which time has no meaning. /// A state in which time has no meaning.
#[derive(Debug, PartialEq, Eq)] #[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Eternity; pub struct Eternity;
#[cfg(not(feature = "no-std"))] #[cfg(not(feature = "no-std"))]
@ -799,6 +876,10 @@ pub(crate) mod time {
std::time::Instant::now() std::time::Instant::now()
} }
fn duration_since(&self, earlier: Self) -> Duration {
self.duration_since(earlier)
}
fn duration_since_epoch() -> Duration { fn duration_since_epoch() -> Duration {
use std::time::SystemTime; use std::time::SystemTime;
SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap() SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap()
@ -814,6 +895,10 @@ pub(crate) mod time {
Self Self
} }
fn duration_since(&self, _earlier: Self) -> Duration {
Duration::from_secs(0)
}
fn duration_since_epoch() -> Duration { fn duration_since_epoch() -> Duration {
Duration::from_secs(0) Duration::from_secs(0)
} }
@ -836,7 +921,7 @@ pub(crate) use self::time::Time;
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::{ChannelLiquidity, ProbabilisticScoringParameters, ProbabilisticScorer, ScoringParameters, ScorerUsingTime, Time}; use super::{ChannelLiquidity, ProbabilisticScoringParameters, ProbabilisticScorerUsingTime, ScoringParameters, ScorerUsingTime, Time};
use super::time::Eternity; use super::time::Eternity;
use ln::features::{ChannelFeatures, NodeFeatures}; use ln::features::{ChannelFeatures, NodeFeatures};
@ -844,7 +929,7 @@ mod tests {
use routing::scoring::Score; use routing::scoring::Score;
use routing::network_graph::{NetworkGraph, NodeId}; use routing::network_graph::{NetworkGraph, NodeId};
use routing::router::RouteHop; use routing::router::RouteHop;
use util::ser::{Readable, Writeable}; use util::ser::{Readable, ReadableArgs, Writeable};
use bitcoin::blockdata::constants::genesis_block; use bitcoin::blockdata::constants::genesis_block;
use bitcoin::hashes::Hash; use bitcoin::hashes::Hash;
@ -859,7 +944,7 @@ mod tests {
// `Time` tests // `Time` tests
/// Time that can be advanced manually in tests. /// Time that can be advanced manually in tests.
#[derive(Debug, PartialEq, Eq)] #[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct SinceEpoch(Duration); struct SinceEpoch(Duration);
impl SinceEpoch { impl SinceEpoch {
@ -877,6 +962,10 @@ mod tests {
Self(Self::duration_since_epoch()) Self(Self::duration_since_epoch())
} }
fn duration_since(&self, earlier: Self) -> Duration {
self.0 - earlier.0
}
fn duration_since_epoch() -> Duration { fn duration_since_epoch() -> Duration {
Self::ELAPSED.with(|elapsed| elapsed.get()) Self::ELAPSED.with(|elapsed| elapsed.get())
} }
@ -1184,6 +1273,9 @@ mod tests {
// `ProbabilisticScorer` tests // `ProbabilisticScorer` tests
/// A probabilistic scorer for testing with time that can be manually advanced.
type ProbabilisticScorer<'a> = ProbabilisticScorerUsingTime::<&'a NetworkGraph, SinceEpoch>;
fn sender_privkey() -> SecretKey { fn sender_privkey() -> SecretKey {
SecretKey::from_slice(&[41; 32]).unwrap() SecretKey::from_slice(&[41; 32]).unwrap()
} }
@ -1308,154 +1400,188 @@ mod tests {
#[test] #[test]
fn liquidity_bounds_directed_from_lowest_node_id() { fn liquidity_bounds_directed_from_lowest_node_id() {
let last_updated = SinceEpoch::now();
let network_graph = network_graph(); let network_graph = network_graph();
let params = ProbabilisticScoringParameters::default(); let params = ProbabilisticScoringParameters::default();
let mut scorer = ProbabilisticScorer::new(params, &network_graph) let mut scorer = ProbabilisticScorer::new(params, &network_graph)
.with_channel(42, .with_channel(42,
ChannelLiquidity { ChannelLiquidity {
min_liquidity_offset_msat: 700, max_liquidity_offset_msat: 100 min_liquidity_offset_msat: 700, max_liquidity_offset_msat: 100, last_updated
}) })
.with_channel(43, .with_channel(43,
ChannelLiquidity { ChannelLiquidity {
min_liquidity_offset_msat: 700, max_liquidity_offset_msat: 100 min_liquidity_offset_msat: 700, max_liquidity_offset_msat: 100, last_updated
}); });
let source = source_node_id(); let source = source_node_id();
let target = target_node_id(); let target = target_node_id();
let recipient = recipient_node_id(); let recipient = recipient_node_id();
let liquidity = scorer.channel_liquidities.get_mut(&42).unwrap();
assert!(source > target); assert!(source > target);
assert_eq!(liquidity.as_directed(&source, &target, 1_000).min_liquidity_msat(), 100);
assert_eq!(liquidity.as_directed(&source, &target, 1_000).max_liquidity_msat(), 300);
assert_eq!(liquidity.as_directed(&target, &source, 1_000).min_liquidity_msat(), 700);
assert_eq!(liquidity.as_directed(&target, &source, 1_000).max_liquidity_msat(), 900);
liquidity.as_directed_mut(&source, &target, 1_000).set_min_liquidity_msat(200);
assert_eq!(liquidity.as_directed(&source, &target, 1_000).min_liquidity_msat(), 200);
assert_eq!(liquidity.as_directed(&source, &target, 1_000).max_liquidity_msat(), 300);
assert_eq!(liquidity.as_directed(&target, &source, 1_000).min_liquidity_msat(), 700);
assert_eq!(liquidity.as_directed(&target, &source, 1_000).max_liquidity_msat(), 800);
let liquidity = scorer.channel_liquidities.get_mut(&43).unwrap();
assert!(target < recipient); assert!(target < recipient);
assert_eq!(liquidity.as_directed(&target, &recipient, 1_000).min_liquidity_msat(), 700);
assert_eq!(liquidity.as_directed(&target, &recipient, 1_000).max_liquidity_msat(), 900);
assert_eq!(liquidity.as_directed(&recipient, &target, 1_000).min_liquidity_msat(), 100);
assert_eq!(liquidity.as_directed(&recipient, &target, 1_000).max_liquidity_msat(), 300);
liquidity.as_directed_mut(&target, &recipient, 1_000).set_max_liquidity_msat(200); // Update minimum liquidity.
assert_eq!(liquidity.as_directed(&target, &recipient, 1_000).min_liquidity_msat(), 0);
assert_eq!(liquidity.as_directed(&target, &recipient, 1_000).max_liquidity_msat(), 200); let liquidity_offset_half_life = scorer.params.liquidity_offset_half_life;
assert_eq!(liquidity.as_directed(&recipient, &target, 1_000).min_liquidity_msat(), 800); let liquidity = scorer.channel_liquidities.get(&42).unwrap()
assert_eq!(liquidity.as_directed(&recipient, &target, 1_000).max_liquidity_msat(), 1000); .as_directed(&source, &target, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 100);
assert_eq!(liquidity.max_liquidity_msat(), 300);
let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&target, &source, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 700);
assert_eq!(liquidity.max_liquidity_msat(), 900);
scorer.channel_liquidities.get_mut(&42).unwrap()
.as_directed_mut(&source, &target, 1_000, liquidity_offset_half_life)
.set_min_liquidity_msat(200);
let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&source, &target, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 200);
assert_eq!(liquidity.max_liquidity_msat(), 300);
let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&target, &source, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 700);
assert_eq!(liquidity.max_liquidity_msat(), 800);
// Update maximum liquidity.
let liquidity = scorer.channel_liquidities.get(&43).unwrap()
.as_directed(&target, &recipient, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 700);
assert_eq!(liquidity.max_liquidity_msat(), 900);
let liquidity = scorer.channel_liquidities.get(&43).unwrap()
.as_directed(&recipient, &target, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 100);
assert_eq!(liquidity.max_liquidity_msat(), 300);
scorer.channel_liquidities.get_mut(&43).unwrap()
.as_directed_mut(&target, &recipient, 1_000, liquidity_offset_half_life)
.set_max_liquidity_msat(200);
let liquidity = scorer.channel_liquidities.get(&43).unwrap()
.as_directed(&target, &recipient, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 0);
assert_eq!(liquidity.max_liquidity_msat(), 200);
let liquidity = scorer.channel_liquidities.get(&43).unwrap()
.as_directed(&recipient, &target, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 800);
assert_eq!(liquidity.max_liquidity_msat(), 1000);
} }
#[test] #[test]
fn resets_liquidity_upper_bound_when_crossed_by_lower_bound() { fn resets_liquidity_upper_bound_when_crossed_by_lower_bound() {
let last_updated = SinceEpoch::now();
let network_graph = network_graph(); let network_graph = network_graph();
let params = ProbabilisticScoringParameters::default(); let params = ProbabilisticScoringParameters::default();
let mut scorer = ProbabilisticScorer::new(params, &network_graph) let mut scorer = ProbabilisticScorer::new(params, &network_graph)
.with_channel(42, .with_channel(42,
ChannelLiquidity { ChannelLiquidity {
min_liquidity_offset_msat: 200, max_liquidity_offset_msat: 400 min_liquidity_offset_msat: 200, max_liquidity_offset_msat: 400, last_updated
}); });
let source = source_node_id(); let source = source_node_id();
let target = target_node_id(); let target = target_node_id();
assert!(source > target); assert!(source > target);
// Check initial bounds. // Check initial bounds.
let liquidity_offset_half_life = scorer.params.liquidity_offset_half_life;
let liquidity = scorer.channel_liquidities.get(&42).unwrap() let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&source, &target, 1_000); .as_directed(&source, &target, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 400); assert_eq!(liquidity.min_liquidity_msat(), 400);
assert_eq!(liquidity.max_liquidity_msat(), 800); assert_eq!(liquidity.max_liquidity_msat(), 800);
let liquidity = scorer.channel_liquidities.get(&42).unwrap() let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&target, &source, 1_000); .as_directed(&target, &source, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 200); assert_eq!(liquidity.min_liquidity_msat(), 200);
assert_eq!(liquidity.max_liquidity_msat(), 600); assert_eq!(liquidity.max_liquidity_msat(), 600);
// Reset from source to target. // Reset from source to target.
scorer.channel_liquidities.get_mut(&42).unwrap() scorer.channel_liquidities.get_mut(&42).unwrap()
.as_directed_mut(&source, &target, 1_000) .as_directed_mut(&source, &target, 1_000, liquidity_offset_half_life)
.set_min_liquidity_msat(900); .set_min_liquidity_msat(900);
let liquidity = scorer.channel_liquidities.get(&42).unwrap() let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&source, &target, 1_000); .as_directed(&source, &target, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 900); assert_eq!(liquidity.min_liquidity_msat(), 900);
assert_eq!(liquidity.max_liquidity_msat(), 1_000); assert_eq!(liquidity.max_liquidity_msat(), 1_000);
let liquidity = scorer.channel_liquidities.get(&42).unwrap() let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&target, &source, 1_000); .as_directed(&target, &source, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 0); assert_eq!(liquidity.min_liquidity_msat(), 0);
assert_eq!(liquidity.max_liquidity_msat(), 100); assert_eq!(liquidity.max_liquidity_msat(), 100);
// Reset from target to source. // Reset from target to source.
scorer.channel_liquidities.get_mut(&42).unwrap() scorer.channel_liquidities.get_mut(&42).unwrap()
.as_directed_mut(&target, &source, 1_000) .as_directed_mut(&target, &source, 1_000, liquidity_offset_half_life)
.set_min_liquidity_msat(400); .set_min_liquidity_msat(400);
let liquidity = scorer.channel_liquidities.get(&42).unwrap() let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&source, &target, 1_000); .as_directed(&source, &target, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 0); assert_eq!(liquidity.min_liquidity_msat(), 0);
assert_eq!(liquidity.max_liquidity_msat(), 600); assert_eq!(liquidity.max_liquidity_msat(), 600);
let liquidity = scorer.channel_liquidities.get(&42).unwrap() let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&target, &source, 1_000); .as_directed(&target, &source, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 400); assert_eq!(liquidity.min_liquidity_msat(), 400);
assert_eq!(liquidity.max_liquidity_msat(), 1_000); assert_eq!(liquidity.max_liquidity_msat(), 1_000);
} }
#[test] #[test]
fn resets_liquidity_lower_bound_when_crossed_by_upper_bound() { fn resets_liquidity_lower_bound_when_crossed_by_upper_bound() {
let last_updated = SinceEpoch::now();
let network_graph = network_graph(); let network_graph = network_graph();
let params = ProbabilisticScoringParameters::default(); let params = ProbabilisticScoringParameters::default();
let mut scorer = ProbabilisticScorer::new(params, &network_graph) let mut scorer = ProbabilisticScorer::new(params, &network_graph)
.with_channel(42, .with_channel(42,
ChannelLiquidity { ChannelLiquidity {
min_liquidity_offset_msat: 200, max_liquidity_offset_msat: 400 min_liquidity_offset_msat: 200, max_liquidity_offset_msat: 400, last_updated
}); });
let source = source_node_id(); let source = source_node_id();
let target = target_node_id(); let target = target_node_id();
assert!(source > target); assert!(source > target);
// Check initial bounds. // Check initial bounds.
let liquidity_offset_half_life = scorer.params.liquidity_offset_half_life;
let liquidity = scorer.channel_liquidities.get(&42).unwrap() let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&source, &target, 1_000); .as_directed(&source, &target, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 400); assert_eq!(liquidity.min_liquidity_msat(), 400);
assert_eq!(liquidity.max_liquidity_msat(), 800); assert_eq!(liquidity.max_liquidity_msat(), 800);
let liquidity = scorer.channel_liquidities.get(&42).unwrap() let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&target, &source, 1_000); .as_directed(&target, &source, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 200); assert_eq!(liquidity.min_liquidity_msat(), 200);
assert_eq!(liquidity.max_liquidity_msat(), 600); assert_eq!(liquidity.max_liquidity_msat(), 600);
// Reset from source to target. // Reset from source to target.
scorer.channel_liquidities.get_mut(&42).unwrap() scorer.channel_liquidities.get_mut(&42).unwrap()
.as_directed_mut(&source, &target, 1_000) .as_directed_mut(&source, &target, 1_000, liquidity_offset_half_life)
.set_max_liquidity_msat(300); .set_max_liquidity_msat(300);
let liquidity = scorer.channel_liquidities.get(&42).unwrap() let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&source, &target, 1_000); .as_directed(&source, &target, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 0); assert_eq!(liquidity.min_liquidity_msat(), 0);
assert_eq!(liquidity.max_liquidity_msat(), 300); assert_eq!(liquidity.max_liquidity_msat(), 300);
let liquidity = scorer.channel_liquidities.get(&42).unwrap() let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&target, &source, 1_000); .as_directed(&target, &source, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 700); assert_eq!(liquidity.min_liquidity_msat(), 700);
assert_eq!(liquidity.max_liquidity_msat(), 1_000); assert_eq!(liquidity.max_liquidity_msat(), 1_000);
// Reset from target to source. // Reset from target to source.
scorer.channel_liquidities.get_mut(&42).unwrap() scorer.channel_liquidities.get_mut(&42).unwrap()
.as_directed_mut(&target, &source, 1_000) .as_directed_mut(&target, &source, 1_000, liquidity_offset_half_life)
.set_max_liquidity_msat(600); .set_max_liquidity_msat(600);
let liquidity = scorer.channel_liquidities.get(&42).unwrap() let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&source, &target, 1_000); .as_directed(&source, &target, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 400); assert_eq!(liquidity.min_liquidity_msat(), 400);
assert_eq!(liquidity.max_liquidity_msat(), 1_000); assert_eq!(liquidity.max_liquidity_msat(), 1_000);
let liquidity = scorer.channel_liquidities.get(&42).unwrap() let liquidity = scorer.channel_liquidities.get(&42).unwrap()
.as_directed(&target, &source, 1_000); .as_directed(&target, &source, 1_000, liquidity_offset_half_life);
assert_eq!(liquidity.min_liquidity_msat(), 0); assert_eq!(liquidity.min_liquidity_msat(), 0);
assert_eq!(liquidity.max_liquidity_msat(), 600); assert_eq!(liquidity.max_liquidity_msat(), 600);
} }
@ -1486,13 +1612,16 @@ mod tests {
#[test] #[test]
fn constant_penalty_outside_liquidity_bounds() { fn constant_penalty_outside_liquidity_bounds() {
let last_updated = SinceEpoch::now();
let network_graph = network_graph(); let network_graph = network_graph();
let params = ProbabilisticScoringParameters { let params = ProbabilisticScoringParameters {
liquidity_penalty_multiplier_msat: 1_000, ..Default::default() liquidity_penalty_multiplier_msat: 1_000, ..Default::default()
}; };
let scorer = ProbabilisticScorer::new(params, &network_graph) let scorer = ProbabilisticScorer::new(params, &network_graph)
.with_channel(42, .with_channel(42,
ChannelLiquidity { min_liquidity_offset_msat: 40, max_liquidity_offset_msat: 40 }); ChannelLiquidity {
min_liquidity_offset_msat: 40, max_liquidity_offset_msat: 40, last_updated
});
let source = source_node_id(); let source = source_node_id();
let target = target_node_id(); let target = target_node_id();
@ -1590,4 +1719,176 @@ mod tests {
assert_eq!(scorer.channel_penalty_msat(42, 250, 1_000, &source, &target), 300); assert_eq!(scorer.channel_penalty_msat(42, 250, 1_000, &source, &target), 300);
assert_eq!(scorer.channel_penalty_msat(43, 250, 1_000, &target, &recipient), 300); assert_eq!(scorer.channel_penalty_msat(43, 250, 1_000, &target, &recipient), 300);
} }
#[test]
fn decays_liquidity_bounds_over_time() {
let network_graph = network_graph();
let params = ProbabilisticScoringParameters {
liquidity_penalty_multiplier_msat: 1_000,
liquidity_offset_half_life: Duration::from_secs(10),
};
let mut scorer = ProbabilisticScorer::new(params, &network_graph);
let source = source_node_id();
let target = target_node_id();
assert_eq!(scorer.channel_penalty_msat(42, 0, 1_024, &source, &target), 0);
assert_eq!(scorer.channel_penalty_msat(42, 1_024, 1_024, &source, &target), 2_000);
scorer.payment_path_failed(&payment_path_for_amount(768).iter().collect::<Vec<_>>(), 42);
scorer.payment_path_failed(&payment_path_for_amount(128).iter().collect::<Vec<_>>(), 43);
assert_eq!(scorer.channel_penalty_msat(42, 128, 1_024, &source, &target), 0);
assert_eq!(scorer.channel_penalty_msat(42, 256, 1_024, &source, &target), 92);
assert_eq!(scorer.channel_penalty_msat(42, 768, 1_024, &source, &target), 1_424);
assert_eq!(scorer.channel_penalty_msat(42, 896, 1_024, &source, &target), 2_000);
SinceEpoch::advance(Duration::from_secs(9));
assert_eq!(scorer.channel_penalty_msat(42, 128, 1_024, &source, &target), 0);
assert_eq!(scorer.channel_penalty_msat(42, 256, 1_024, &source, &target), 92);
assert_eq!(scorer.channel_penalty_msat(42, 768, 1_024, &source, &target), 1_424);
assert_eq!(scorer.channel_penalty_msat(42, 896, 1_024, &source, &target), 2_000);
SinceEpoch::advance(Duration::from_secs(1));
assert_eq!(scorer.channel_penalty_msat(42, 64, 1_024, &source, &target), 0);
assert_eq!(scorer.channel_penalty_msat(42, 128, 1_024, &source, &target), 34);
assert_eq!(scorer.channel_penalty_msat(42, 896, 1_024, &source, &target), 1_812);
assert_eq!(scorer.channel_penalty_msat(42, 960, 1_024, &source, &target), 2_000);
// Fully decay liquidity lower bound.
SinceEpoch::advance(Duration::from_secs(10 * 7));
assert_eq!(scorer.channel_penalty_msat(42, 0, 1_024, &source, &target), 0);
assert_eq!(scorer.channel_penalty_msat(42, 1, 1_024, &source, &target), 0);
assert_eq!(scorer.channel_penalty_msat(42, 1_023, 1_024, &source, &target), 2_000);
assert_eq!(scorer.channel_penalty_msat(42, 1_024, 1_024, &source, &target), 2_000);
// Fully decay liquidity upper bound.
SinceEpoch::advance(Duration::from_secs(10));
assert_eq!(scorer.channel_penalty_msat(42, 0, 1_024, &source, &target), 0);
assert_eq!(scorer.channel_penalty_msat(42, 1_024, 1_024, &source, &target), 2_000);
SinceEpoch::advance(Duration::from_secs(10));
assert_eq!(scorer.channel_penalty_msat(42, 0, 1_024, &source, &target), 0);
assert_eq!(scorer.channel_penalty_msat(42, 1_024, 1_024, &source, &target), 2_000);
}
#[test]
fn decays_liquidity_bounds_without_shift_overflow() {
let network_graph = network_graph();
let params = ProbabilisticScoringParameters {
liquidity_penalty_multiplier_msat: 1_000,
liquidity_offset_half_life: Duration::from_secs(10),
};
let mut scorer = ProbabilisticScorer::new(params, &network_graph);
let source = source_node_id();
let target = target_node_id();
assert_eq!(scorer.channel_penalty_msat(42, 256, 1_024, &source, &target), 124);
scorer.payment_path_failed(&payment_path_for_amount(512).iter().collect::<Vec<_>>(), 42);
assert_eq!(scorer.channel_penalty_msat(42, 256, 1_024, &source, &target), 281);
// An unchecked right shift 64 bits or more in DirectedChannelLiquidity::decayed_offset_msat
// would cause an overflow.
SinceEpoch::advance(Duration::from_secs(10 * 64));
assert_eq!(scorer.channel_penalty_msat(42, 256, 1_024, &source, &target), 124);
SinceEpoch::advance(Duration::from_secs(10));
assert_eq!(scorer.channel_penalty_msat(42, 256, 1_024, &source, &target), 124);
}
#[test]
fn restricts_liquidity_bounds_after_decay() {
let network_graph = network_graph();
let params = ProbabilisticScoringParameters {
liquidity_penalty_multiplier_msat: 1_000,
liquidity_offset_half_life: Duration::from_secs(10),
};
let mut scorer = ProbabilisticScorer::new(params, &network_graph);
let source = source_node_id();
let target = target_node_id();
assert_eq!(scorer.channel_penalty_msat(42, 512, 1_024, &source, &target), 300);
// More knowledge gives higher confidence (256, 768), meaning a lower penalty.
scorer.payment_path_failed(&payment_path_for_amount(768).iter().collect::<Vec<_>>(), 42);
scorer.payment_path_failed(&payment_path_for_amount(256).iter().collect::<Vec<_>>(), 43);
assert_eq!(scorer.channel_penalty_msat(42, 512, 1_024, &source, &target), 281);
// Decaying knowledge gives less confidence (128, 896), meaning a higher penalty.
SinceEpoch::advance(Duration::from_secs(10));
assert_eq!(scorer.channel_penalty_msat(42, 512, 1_024, &source, &target), 293);
// Reducing the upper bound gives more confidence (128, 832) that the payment amount (512)
// is closer to the upper bound, meaning a higher penalty.
scorer.payment_path_successful(&payment_path_for_amount(64).iter().collect::<Vec<_>>());
assert_eq!(scorer.channel_penalty_msat(42, 512, 1_024, &source, &target), 333);
// Increasing the lower bound gives more confidence (256, 832) that the payment amount (512)
// is closer to the lower bound, meaning a lower penalty.
scorer.payment_path_failed(&payment_path_for_amount(256).iter().collect::<Vec<_>>(), 43);
assert_eq!(scorer.channel_penalty_msat(42, 512, 1_024, &source, &target), 247);
// Further decaying affects the lower bound more than the upper bound (128, 928).
SinceEpoch::advance(Duration::from_secs(10));
assert_eq!(scorer.channel_penalty_msat(42, 512, 1_024, &source, &target), 280);
}
#[test]
fn restores_persisted_liquidity_bounds() {
let network_graph = network_graph();
let params = ProbabilisticScoringParameters {
liquidity_penalty_multiplier_msat: 1_000,
liquidity_offset_half_life: Duration::from_secs(10),
};
let mut scorer = ProbabilisticScorer::new(params, &network_graph);
let source = source_node_id();
let target = target_node_id();
scorer.payment_path_failed(&payment_path_for_amount(500).iter().collect::<Vec<_>>(), 42);
assert_eq!(scorer.channel_penalty_msat(42, 500, 1_000, &source, &target), 2_000);
SinceEpoch::advance(Duration::from_secs(10));
assert_eq!(scorer.channel_penalty_msat(42, 500, 1_000, &source, &target), 475);
scorer.payment_path_failed(&payment_path_for_amount(250).iter().collect::<Vec<_>>(), 43);
assert_eq!(scorer.channel_penalty_msat(42, 500, 1_000, &source, &target), 300);
let mut serialized_scorer = Vec::new();
scorer.write(&mut serialized_scorer).unwrap();
let mut serialized_scorer = io::Cursor::new(&serialized_scorer);
let deserialized_scorer =
<ProbabilisticScorer>::read(&mut serialized_scorer, (params, &network_graph)).unwrap();
assert_eq!(deserialized_scorer.channel_penalty_msat(42, 500, 1_000, &source, &target), 300);
}
#[test]
fn decays_persisted_liquidity_bounds() {
let network_graph = network_graph();
let params = ProbabilisticScoringParameters {
liquidity_penalty_multiplier_msat: 1_000,
liquidity_offset_half_life: Duration::from_secs(10),
};
let mut scorer = ProbabilisticScorer::new(params, &network_graph);
let source = source_node_id();
let target = target_node_id();
scorer.payment_path_failed(&payment_path_for_amount(500).iter().collect::<Vec<_>>(), 42);
assert_eq!(scorer.channel_penalty_msat(42, 500, 1_000, &source, &target), 2_000);
let mut serialized_scorer = Vec::new();
scorer.write(&mut serialized_scorer).unwrap();
SinceEpoch::advance(Duration::from_secs(10));
let mut serialized_scorer = io::Cursor::new(&serialized_scorer);
let deserialized_scorer =
<ProbabilisticScorer>::read(&mut serialized_scorer, (params, &network_graph)).unwrap();
assert_eq!(deserialized_scorer.channel_penalty_msat(42, 500, 1_000, &source, &target), 475);
scorer.payment_path_failed(&payment_path_for_amount(250).iter().collect::<Vec<_>>(), 43);
assert_eq!(scorer.channel_penalty_msat(42, 500, 1_000, &source, &target), 300);
SinceEpoch::advance(Duration::from_secs(10));
assert_eq!(deserialized_scorer.channel_penalty_msat(42, 500, 1_000, &source, &target), 367);
}
} }