Move test_dup_htlc_onchain_fails_on_reload to payment_tests

test_dup_htlc_onchain_fails_on_reload is now more of a
payment_test than a functional_test, testing for handling of
pending payments.
This commit is contained in:
Matt Corallo 2021-10-10 23:42:03 +00:00
parent 5296a4a04d
commit 251eb3bda8
2 changed files with 172 additions and 170 deletions

View file

@ -12,7 +12,7 @@
//! claim outputs on-chain.
use chain;
use chain::{Confirm, Listen, Watch, ChannelMonitorUpdateErr};
use chain::{Confirm, Listen, Watch};
use chain::channelmonitor;
use chain::channelmonitor::{ChannelMonitor, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY};
use chain::transaction::OutPoint;
@ -4100,171 +4100,6 @@ fn test_no_txn_manager_serialize_deserialize() {
send_payment(&nodes[0], &[&nodes[1]], 1000000);
}
fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
// When a Channel is closed, any outbound HTLCs which were relayed through it are simply
// dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
// having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
// the ChannelMonitor tells it to.
//
// If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
// ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
// duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
// Route a payment, but force-close the channel before the HTLC fulfill message arrives at
// nodes[0].
let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10000000);
nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id).unwrap();
check_closed_broadcast!(nodes[0], true);
check_added_monitors!(nodes[0], 1);
check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
// Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(node_txn.len(), 3);
assert_eq!(node_txn[0], node_txn[1]);
check_spends!(node_txn[1], funding_tx);
check_spends!(node_txn[2], node_txn[1]);
let timeout_txn = vec![node_txn[2].clone()];
assert!(nodes[1].node.claim_funds(payment_preimage));
check_added_monitors!(nodes[1], 1);
let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
check_closed_broadcast!(nodes[1], true);
check_added_monitors!(nodes[1], 1);
check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
header.prev_blockhash = nodes[0].best_block_hash();
connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
if confirm_commitment_tx {
connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
}
header.prev_blockhash = nodes[0].best_block_hash();
let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { claim_txn } };
if payment_timeout {
assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
connect_block(&nodes[0], &claim_block);
connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
}
// Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
// returning TemporaryFailure. This should cause the claim event to never make its way to the
// ChannelManager.
chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
chanmon_cfgs[0].persister.set_update_ret(Err(ChannelMonitorUpdateErr::TemporaryFailure));
if payment_timeout {
connect_blocks(&nodes[0], 1);
} else {
connect_block(&nodes[0], &claim_block);
}
let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
.get_mut(&funding_txo).unwrap().drain().collect();
assert_eq!(mon_updates.len(), 1);
assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
// If we persist the ChannelManager here, we should get the PaymentSent event after
// deserialization.
let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
if !persist_manager_post_event {
nodes[0].node.write(&mut chan_manager_serialized).unwrap();
}
// Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
// payment sent event.
chanmon_cfgs[0].persister.set_update_ret(Ok(()));
let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, mon_updates[0]).unwrap();
if payment_timeout {
expect_payment_failed!(nodes[0], payment_hash, true);
} else {
expect_payment_sent!(nodes[0], payment_preimage);
}
// If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
// twice.
if persist_manager_post_event {
nodes[0].node.write(&mut chan_manager_serialized).unwrap();
}
// Now reload nodes[0]...
persister = test_utils::TestPersister::new();
let keys_manager = &chanmon_cfgs[0].keys_manager;
new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
nodes[0].chain_monitor = &new_chain_monitor;
let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
&mut chan_0_monitor_read, keys_manager).unwrap();
assert!(chan_0_monitor_read.is_empty());
let (_, nodes_0_deserialized_tmp) = {
let mut channel_monitors = HashMap::new();
channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
<(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
default_config: Default::default(),
keys_manager,
fee_estimator: node_cfgs[0].fee_estimator,
chain_monitor: nodes[0].chain_monitor,
tx_broadcaster: nodes[0].tx_broadcaster.clone(),
logger: nodes[0].logger,
channel_monitors,
}).unwrap()
};
nodes_0_deserialized = nodes_0_deserialized_tmp;
assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
check_added_monitors!(nodes[0], 1);
nodes[0].node = &nodes_0_deserialized;
if persist_manager_post_event {
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
} else if payment_timeout {
expect_payment_failed!(nodes[0], payment_hash, true);
} else {
expect_payment_sent!(nodes[0], payment_preimage);
}
// Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
// which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
// payment events should kick in, leaving us with no pending events here.
let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
}
#[test]
fn test_dup_htlc_onchain_fails_on_reload() {
do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
}
#[test]
fn test_manager_serialize_deserialize_events() {
// This test makes sure the events field in ChannelManager survives de/serialization

View file

@ -11,10 +11,11 @@
//! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
//! payments thereafter.
use chain::{Confirm, Watch};
use chain::channelmonitor::ChannelMonitor;
use chain::{ChannelMonitorUpdateErr, Confirm, Listen, Watch};
use chain::channelmonitor::{ANTI_REORG_DELAY, ChannelMonitor, LATENCY_GRACE_PERIOD_BLOCKS};
use chain::transaction::OutPoint;
use ln::{PaymentPreimage, PaymentHash};
use ln::channelmanager::{ChannelManager, ChannelManagerReadArgs, PaymentId, PaymentSendFailure};
use ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, ChannelManagerReadArgs, PaymentId, PaymentSendFailure};
use ln::features::InitFeatures;
use ln::msgs;
use ln::msgs::{ChannelMessageHandler, ErrorAction};
@ -23,10 +24,11 @@ use util::test_utils;
use util::errors::APIError;
use util::enforcing_trait_impls::EnforcingSigner;
use util::ser::{ReadableArgs, Writeable};
use io;
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::Hash;
use bitcoin::BlockHash;
use bitcoin::{Block, BlockHeader, BlockHash};
use prelude::*;
@ -459,3 +461,168 @@ fn retry_with_no_persist() {
do_retry_with_no_persist(true);
do_retry_with_no_persist(false);
}
fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
// When a Channel is closed, any outbound HTLCs which were relayed through it are simply
// dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
// having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
// the ChannelMonitor tells it to.
//
// If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
// ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
// duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
// Route a payment, but force-close the channel before the HTLC fulfill message arrives at
// nodes[0].
let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10000000);
nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id).unwrap();
check_closed_broadcast!(nodes[0], true);
check_added_monitors!(nodes[0], 1);
check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
// Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(node_txn.len(), 3);
assert_eq!(node_txn[0], node_txn[1]);
check_spends!(node_txn[1], funding_tx);
check_spends!(node_txn[2], node_txn[1]);
let timeout_txn = vec![node_txn[2].clone()];
assert!(nodes[1].node.claim_funds(payment_preimage));
check_added_monitors!(nodes[1], 1);
let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
check_closed_broadcast!(nodes[1], true);
check_added_monitors!(nodes[1], 1);
check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
header.prev_blockhash = nodes[0].best_block_hash();
connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
if confirm_commitment_tx {
connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
}
header.prev_blockhash = nodes[0].best_block_hash();
let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { claim_txn } };
if payment_timeout {
assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
connect_block(&nodes[0], &claim_block);
connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
}
// Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
// returning TemporaryFailure. This should cause the claim event to never make its way to the
// ChannelManager.
chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
chanmon_cfgs[0].persister.set_update_ret(Err(ChannelMonitorUpdateErr::TemporaryFailure));
if payment_timeout {
connect_blocks(&nodes[0], 1);
} else {
connect_block(&nodes[0], &claim_block);
}
let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
.get_mut(&funding_txo).unwrap().drain().collect();
assert_eq!(mon_updates.len(), 1);
assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
// If we persist the ChannelManager here, we should get the PaymentSent event after
// deserialization.
let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
if !persist_manager_post_event {
nodes[0].node.write(&mut chan_manager_serialized).unwrap();
}
// Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
// payment sent event.
chanmon_cfgs[0].persister.set_update_ret(Ok(()));
let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, mon_updates[0]).unwrap();
if payment_timeout {
expect_payment_failed!(nodes[0], payment_hash, true);
} else {
expect_payment_sent!(nodes[0], payment_preimage);
}
// If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
// twice.
if persist_manager_post_event {
nodes[0].node.write(&mut chan_manager_serialized).unwrap();
}
// Now reload nodes[0]...
persister = test_utils::TestPersister::new();
let keys_manager = &chanmon_cfgs[0].keys_manager;
new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
nodes[0].chain_monitor = &new_chain_monitor;
let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
&mut chan_0_monitor_read, keys_manager).unwrap();
assert!(chan_0_monitor_read.is_empty());
let (_, nodes_0_deserialized_tmp) = {
let mut channel_monitors = HashMap::new();
channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
<(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
default_config: Default::default(),
keys_manager,
fee_estimator: node_cfgs[0].fee_estimator,
chain_monitor: nodes[0].chain_monitor,
tx_broadcaster: nodes[0].tx_broadcaster.clone(),
logger: nodes[0].logger,
channel_monitors,
}).unwrap()
};
nodes_0_deserialized = nodes_0_deserialized_tmp;
assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
check_added_monitors!(nodes[0], 1);
nodes[0].node = &nodes_0_deserialized;
if persist_manager_post_event {
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
} else if payment_timeout {
expect_payment_failed!(nodes[0], payment_hash, true);
} else {
expect_payment_sent!(nodes[0], payment_preimage);
}
// Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
// which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
// payment events should kick in, leaving us with no pending events here.
let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
}
#[test]
fn test_dup_htlc_onchain_fails_on_reload() {
do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
}