Merge pull request #48 from TheBlueMatt/2018-07-monitor-serialize

Implement channelmonitor (de)serialization
This commit is contained in:
Matt Corallo 2018-07-18 06:53:15 -07:00 committed by GitHub
commit 155f2ef188
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 552 additions and 20 deletions

View file

@ -51,6 +51,11 @@ Assorted random TODOs:
* Some kind of logging subsystem/API.
* Migrate all our serialize() -> Vec stuff to serialize(byte_writer) so that we
can avoid allocating a huge buffer for everything we serialize/deserialize.
* Migrate the above TODOs to GitHub issues.
Notes on coding style:
* Use tabs. If you want to align lines, use spaces. Any desired alignment
should display fine at any tab-length display setting.

View file

@ -42,6 +42,10 @@ path = "fuzz_targets/channel_target.rs"
name = "full_stack_target"
path = "fuzz_targets/full_stack_target.rs"
[[bin]]
name = "channelmonitor_deserialize_target"
path = "fuzz_targets/channelmonitor_deserialize_target.rs"
# message fuzz targets
[[bin]]
name = "msg_ping_target"

View file

@ -0,0 +1,63 @@
// This file is auto-generated by gen_target.sh based on msg_target_template.txt
// To modify it, modify msg_target_template.txt and run gen_target.sh instead.
extern crate lightning;
use lightning::ln::channelmonitor;
use lightning::util::reset_rng_state;
#[inline]
pub fn do_test(data: &[u8]) {
reset_rng_state();
if let Some(monitor) = channelmonitor::ChannelMonitor::deserialize(data) {
assert!(channelmonitor::ChannelMonitor::deserialize(&monitor.serialize_for_disk()[..]).unwrap() == monitor);
monitor.serialize_for_watchtower();
}
}
#[cfg(feature = "afl")]
extern crate afl;
#[cfg(feature = "afl")]
fn main() {
afl::read_stdio_bytes(|data| {
do_test(&data);
});
}
#[cfg(feature = "honggfuzz")]
#[macro_use] extern crate honggfuzz;
#[cfg(feature = "honggfuzz")]
fn main() {
loop {
fuzz!(|data| {
do_test(data);
});
}
}
#[cfg(test)]
mod tests {
fn extend_vec_from_hex(hex: &str, out: &mut Vec<u8>) {
let mut b = 0;
for (idx, c) in hex.as_bytes().iter().enumerate() {
b <<= 4;
match *c {
b'A'...b'F' => b |= c - b'A' + 10,
b'a'...b'f' => b |= c - b'a' + 10,
b'0'...b'9' => b |= c - b'0',
_ => panic!("Bad hex"),
}
if (idx & 1) == 1 {
out.push(b);
b = 0;
}
}
}
#[test]
fn duplicate_crash() {
let mut a = Vec::new();
extend_vec_from_hex("00", &mut a);
super::do_test(&a);
}
}

View file

@ -151,7 +151,7 @@ pub fn get_revokeable_redeemscript(revocation_key: &PublicKey, to_self_delay: u1
.into_script()
}
#[derive(Clone)]
#[derive(Clone, PartialEq)]
pub struct HTLCOutputInCommitment {
pub offered: bool,
pub amount_msat: u64,

View file

@ -1,6 +1,7 @@
use bitcoin::blockdata::block::BlockHeader;
use bitcoin::blockdata::transaction::{TxIn,TxOut,SigHashType,Transaction};
use bitcoin::blockdata::script::Script;
use bitcoin::network::serialize;
use bitcoin::util::hash::Sha256dHash;
use bitcoin::util::bip143;
@ -15,6 +16,7 @@ use ln::chan_utils::HTLCOutputInCommitment;
use chain::chaininterface::{ChainListener, ChainWatchInterface, BroadcasterInterface};
use chain::transaction::OutPoint;
use util::sha2::Sha256;
use util::byte_utils;
use std::collections::HashMap;
use std::sync::{Arc,Mutex};
@ -115,7 +117,7 @@ const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
/// HTLC-Success transaction.
const CLTV_CLAIM_BUFFER: u32 = 6;
#[derive(Clone)]
#[derive(Clone, PartialEq)]
enum KeyStorage {
PrivMode {
revocation_base_key: SecretKey,
@ -128,8 +130,9 @@ enum KeyStorage {
}
}
#[derive(Clone)]
#[derive(Clone, PartialEq)]
struct LocalSignedTx {
/// txid of the transaction in tx, just used to make comparison faster
txid: Sha256dHash,
tx: Transaction,
revocation_key: PublicKey,
@ -140,6 +143,9 @@ struct LocalSignedTx {
htlc_outputs: Vec<(HTLCOutputInCommitment, Signature, Signature)>,
}
const SERIALIZATION_VERSION: u8 = 1;
const MIN_SERIALIZATION_VERSION: u8 = 1;
pub struct ChannelMonitor {
funding_txo: Option<OutPoint>,
commitment_transaction_number_obscure_factor: u64,
@ -155,9 +161,16 @@ pub struct ChannelMonitor {
old_secrets: [([u8; 32], u64); 49],
remote_claimable_outpoints: HashMap<Sha256dHash, Vec<HTLCOutputInCommitment>>,
remote_htlc_outputs_on_chain: Mutex<HashMap<Sha256dHash, u64>>,
//hash to commitment number mapping use to determine the state of transaction owning it
// (revoked/non-revoked) and so lightnen pruning
/// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
/// Nor can we figure out their commitment numbers without the commitment transaction they are
/// spending. Thus, in order to claim them via revocation key, we track all the remote
/// commitment transactions which we find on-chain, mapping them to the commitment number which
/// can be used to derive the revocation key and claim the transactions.
remote_commitment_txn_on_chain: Mutex<HashMap<Sha256dHash, u64>>,
/// Cache used to make pruning of payment_preimages faster.
/// Maps payment_hash values to commitment numbers for remote transactions for non-revoked
/// remote transactions (ie should remain pretty small).
/// Serialized to disk but should generally not be sent to Watchtowers.
remote_hash_commitment_number: HashMap<[u8; 32], u64>,
// We store two local commitment transactions to avoid any race conditions where we may update
@ -188,7 +201,7 @@ impl Clone for ChannelMonitor {
old_secrets: self.old_secrets.clone(),
remote_claimable_outpoints: self.remote_claimable_outpoints.clone(),
remote_htlc_outputs_on_chain: Mutex::new((*self.remote_htlc_outputs_on_chain.lock().unwrap()).clone()),
remote_commitment_txn_on_chain: Mutex::new((*self.remote_commitment_txn_on_chain.lock().unwrap()).clone()),
remote_hash_commitment_number: self.remote_hash_commitment_number.clone(),
prev_local_signed_commitment_tx: self.prev_local_signed_commitment_tx.clone(),
@ -202,6 +215,40 @@ impl Clone for ChannelMonitor {
}
}
#[cfg(any(test, feature = "fuzztarget"))]
/// Used only in testing and fuzztarget to check serialization roundtrips don't change the
/// underlying object
impl PartialEq for ChannelMonitor {
fn eq(&self, other: &Self) -> bool {
if self.funding_txo != other.funding_txo ||
self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
self.key_storage != other.key_storage ||
self.delayed_payment_base_key != other.delayed_payment_base_key ||
self.their_htlc_base_key != other.their_htlc_base_key ||
self.their_cur_revocation_points != other.their_cur_revocation_points ||
self.our_to_self_delay != other.our_to_self_delay ||
self.their_to_self_delay != other.their_to_self_delay ||
self.remote_claimable_outpoints != other.remote_claimable_outpoints ||
self.remote_hash_commitment_number != other.remote_hash_commitment_number ||
self.prev_local_signed_commitment_tx != other.prev_local_signed_commitment_tx ||
self.current_local_signed_commitment_tx != other.current_local_signed_commitment_tx ||
self.payment_preimages != other.payment_preimages ||
self.destination_script != other.destination_script
{
false
} else {
for (&(ref secret, ref idx), &(ref o_secret, ref o_idx)) in self.old_secrets.iter().zip(other.old_secrets.iter()) {
if secret != o_secret || idx != o_idx {
return false
}
}
let us = self.remote_commitment_txn_on_chain.lock().unwrap();
let them = other.remote_commitment_txn_on_chain.lock().unwrap();
*us == *them
}
}
}
impl ChannelMonitor {
pub fn new(revocation_base_key: &SecretKey, delayed_payment_base_key: &PublicKey, htlc_base_key: &SecretKey, our_to_self_delay: u16, destination_script: Script) -> ChannelMonitor {
ChannelMonitor {
@ -221,7 +268,7 @@ impl ChannelMonitor {
old_secrets: [([0; 32], 1 << 48); 49],
remote_claimable_outpoints: HashMap::new(),
remote_htlc_outputs_on_chain: Mutex::new(HashMap::new()),
remote_commitment_txn_on_chain: Mutex::new(HashMap::new()),
remote_hash_commitment_number: HashMap::new(),
prev_local_signed_commitment_tx: None,
@ -264,7 +311,7 @@ impl ChannelMonitor {
/// in case the remote end force-closes using their latest state. Prunes old preimages if neither
/// needed by local commitment transactions HTCLs nor by remote ones. Unless we haven't already seen remote
/// commitment transaction's secret, they are de facto pruned (we can use revocation key).
pub fn provide_secret(&mut self, idx: u64, secret: [u8; 32], their_next_revocation_point: Option<(u64, PublicKey)>) -> Result<(), HandleError> {
pub(super) fn provide_secret(&mut self, idx: u64, secret: [u8; 32], their_next_revocation_point: Option<(u64, PublicKey)>) -> Result<(), HandleError> {
let pos = ChannelMonitor::place_secret(idx);
for i in 0..pos {
let (old_secret, old_idx) = self.old_secrets[i as usize];
@ -334,7 +381,7 @@ impl ChannelMonitor {
/// The monitor watches for it to be broadcasted and then uses the HTLC information (and
/// possibly future revocation/preimage information) to claim outputs where possible.
/// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
pub fn provide_latest_remote_commitment_tx_info(&mut self, unsigned_commitment_tx: &Transaction, htlc_outputs: Vec<HTLCOutputInCommitment>, commitment_number: u64) {
pub(super) fn provide_latest_remote_commitment_tx_info(&mut self, unsigned_commitment_tx: &Transaction, htlc_outputs: Vec<HTLCOutputInCommitment>, commitment_number: u64) {
// TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
// so that a remote monitor doesn't learn anything unless there is a malicious close.
// (only maybe, sadly we cant do the same for local info, as we need to be aware of
@ -350,7 +397,7 @@ impl ChannelMonitor {
/// is important that any clones of this channel monitor (including remote clones) by kept
/// up-to-date as our local commitment transaction is updated.
/// Panics if set_their_to_self_delay has never been called.
pub fn provide_latest_local_commitment_tx_info(&mut self, signed_commitment_tx: Transaction, local_keys: chan_utils::TxCreationKeys, feerate_per_kw: u64, htlc_outputs: Vec<(HTLCOutputInCommitment, Signature, Signature)>) {
pub(super) fn provide_latest_local_commitment_tx_info(&mut self, signed_commitment_tx: Transaction, local_keys: chan_utils::TxCreationKeys, feerate_per_kw: u64, htlc_outputs: Vec<(HTLCOutputInCommitment, Signature, Signature)>) {
assert!(self.their_to_self_delay.is_some());
self.prev_local_signed_commitment_tx = self.current_local_signed_commitment_tx.take();
self.current_local_signed_commitment_tx = Some(LocalSignedTx {
@ -367,7 +414,7 @@ impl ChannelMonitor {
/// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
/// commitment_tx_infos which contain the payment hash have been revoked.
pub fn provide_payment_preimage(&mut self, payment_hash: &[u8; 32], payment_preimage: &[u8; 32]) {
pub(super) fn provide_payment_preimage(&mut self, payment_hash: &[u8; 32], payment_preimage: &[u8; 32]) {
self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
}
@ -402,7 +449,7 @@ impl ChannelMonitor {
}
/// Panics if commitment_transaction_number_obscure_factor doesn't fit in 48 bits
pub fn set_commitment_obscure_factor(&mut self, commitment_transaction_number_obscure_factor: u64) {
pub(super) fn set_commitment_obscure_factor(&mut self, commitment_transaction_number_obscure_factor: u64) {
assert!(commitment_transaction_number_obscure_factor < (1 << 48));
self.commitment_transaction_number_obscure_factor = commitment_transaction_number_obscure_factor;
}
@ -411,19 +458,19 @@ impl ChannelMonitor {
/// optional, without it this monitor cannot be used in an SPV client, but you may wish to
/// avoid this (or call unset_funding_info) on a monitor you wish to send to a watchtower as it
/// provides slightly better privacy.
pub fn set_funding_info(&mut self, funding_info: OutPoint) {
pub(super) fn set_funding_info(&mut self, funding_info: OutPoint) {
self.funding_txo = Some(funding_info);
}
pub fn set_their_htlc_base_key(&mut self, their_htlc_base_key: &PublicKey) {
pub(super) fn set_their_htlc_base_key(&mut self, their_htlc_base_key: &PublicKey) {
self.their_htlc_base_key = Some(their_htlc_base_key.clone());
}
pub fn set_their_to_self_delay(&mut self, their_to_self_delay: u16) {
pub(super) fn set_their_to_self_delay(&mut self, their_to_self_delay: u16) {
self.their_to_self_delay = Some(their_to_self_delay);
}
pub fn unset_funding_info(&mut self) {
pub(super) fn unset_funding_info(&mut self) {
self.funding_txo = None;
}
@ -431,6 +478,385 @@ impl ChannelMonitor {
self.funding_txo
}
/// Serializes into a vec, with various modes for the exposed pub fns
fn serialize(&self, for_local_storage: bool) -> Vec<u8> {
let mut res = Vec::new();
res.push(SERIALIZATION_VERSION);
res.push(MIN_SERIALIZATION_VERSION);
match self.funding_txo {
Some(outpoint) => {
res.extend_from_slice(&outpoint.txid[..]);
res.extend_from_slice(&byte_utils::be16_to_array(outpoint.index));
},
None => {
// We haven't even been initialized...not sure why anyone is serializing us, but
// not much to give them.
return res;
},
}
// Set in initial Channel-object creation, so should always be set by now:
res.extend_from_slice(&byte_utils::be48_to_array(self.commitment_transaction_number_obscure_factor));
match self.key_storage {
KeyStorage::PrivMode { ref revocation_base_key, ref htlc_base_key } => {
res.push(0);
res.extend_from_slice(&revocation_base_key[..]);
res.extend_from_slice(&htlc_base_key[..]);
},
KeyStorage::SigsMode { .. } => unimplemented!(),
}
res.extend_from_slice(&self.delayed_payment_base_key.serialize());
res.extend_from_slice(&self.their_htlc_base_key.as_ref().unwrap().serialize());
match self.their_cur_revocation_points {
Some((idx, pubkey, second_option)) => {
res.extend_from_slice(&byte_utils::be48_to_array(idx));
res.extend_from_slice(&pubkey.serialize());
match second_option {
Some(second_pubkey) => {
res.extend_from_slice(&second_pubkey.serialize());
},
None => {
res.extend_from_slice(&[0; 33]);
},
}
},
None => {
res.extend_from_slice(&byte_utils::be48_to_array(0));
},
}
res.extend_from_slice(&byte_utils::be16_to_array(self.our_to_self_delay));
res.extend_from_slice(&byte_utils::be16_to_array(self.their_to_self_delay.unwrap()));
for &(ref secret, ref idx) in self.old_secrets.iter() {
res.extend_from_slice(secret);
res.extend_from_slice(&byte_utils::be64_to_array(*idx));
}
macro_rules! serialize_htlc_in_commitment {
($htlc_output: expr) => {
res.push($htlc_output.offered as u8);
res.extend_from_slice(&byte_utils::be64_to_array($htlc_output.amount_msat));
res.extend_from_slice(&byte_utils::be32_to_array($htlc_output.cltv_expiry));
res.extend_from_slice(&$htlc_output.payment_hash);
res.extend_from_slice(&byte_utils::be32_to_array($htlc_output.transaction_output_index));
}
}
res.extend_from_slice(&byte_utils::be64_to_array(self.remote_claimable_outpoints.len() as u64));
for (txid, htlc_outputs) in self.remote_claimable_outpoints.iter() {
res.extend_from_slice(&txid[..]);
res.extend_from_slice(&byte_utils::be64_to_array(htlc_outputs.len() as u64));
for htlc_output in htlc_outputs.iter() {
serialize_htlc_in_commitment!(htlc_output);
}
}
{
let remote_commitment_txn_on_chain = self.remote_commitment_txn_on_chain.lock().unwrap();
res.extend_from_slice(&byte_utils::be64_to_array(remote_commitment_txn_on_chain.len() as u64));
for (txid, commitment_number) in remote_commitment_txn_on_chain.iter() {
res.extend_from_slice(&txid[..]);
res.extend_from_slice(&byte_utils::be48_to_array(*commitment_number));
}
}
if for_local_storage {
res.extend_from_slice(&byte_utils::be64_to_array(self.remote_hash_commitment_number.len() as u64));
for (payment_hash, commitment_number) in self.remote_hash_commitment_number.iter() {
res.extend_from_slice(payment_hash);
res.extend_from_slice(&byte_utils::be48_to_array(*commitment_number));
}
} else {
res.extend_from_slice(&byte_utils::be64_to_array(0));
}
macro_rules! serialize_local_tx {
($local_tx: expr) => {
let tx_ser = serialize::serialize(&$local_tx.tx).unwrap();
res.extend_from_slice(&byte_utils::be64_to_array(tx_ser.len() as u64));
res.extend_from_slice(&tx_ser);
res.extend_from_slice(&$local_tx.revocation_key.serialize());
res.extend_from_slice(&$local_tx.a_htlc_key.serialize());
res.extend_from_slice(&$local_tx.b_htlc_key.serialize());
res.extend_from_slice(&$local_tx.delayed_payment_key.serialize());
res.extend_from_slice(&byte_utils::be64_to_array($local_tx.feerate_per_kw));
res.extend_from_slice(&byte_utils::be64_to_array($local_tx.htlc_outputs.len() as u64));
for &(ref htlc_output, ref their_sig, ref our_sig) in $local_tx.htlc_outputs.iter() {
serialize_htlc_in_commitment!(htlc_output);
res.extend_from_slice(&their_sig.serialize_compact(&self.secp_ctx));
res.extend_from_slice(&our_sig.serialize_compact(&self.secp_ctx));
}
}
}
if let Some(ref prev_local_tx) = self.prev_local_signed_commitment_tx {
res.push(1);
serialize_local_tx!(prev_local_tx);
} else {
res.push(0);
}
if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
res.push(1);
serialize_local_tx!(cur_local_tx);
} else {
res.push(0);
}
res.extend_from_slice(&byte_utils::be64_to_array(self.payment_preimages.len() as u64));
for payment_preimage in self.payment_preimages.values() {
res.extend_from_slice(payment_preimage);
}
res.extend_from_slice(&byte_utils::be64_to_array(self.destination_script.len() as u64));
res.extend_from_slice(&self.destination_script[..]);
res
}
/// Encodes this monitor into a byte array, suitable for writing to disk.
pub fn serialize_for_disk(&self) -> Vec<u8> {
self.serialize(true)
}
/// Encodes this monitor into a byte array, suitable for sending to a remote watchtower
pub fn serialize_for_watchtower(&self) -> Vec<u8> {
self.serialize(false)
}
/// Attempts to decode a serialized monitor
pub fn deserialize(data: &[u8]) -> Option<Self> {
let mut read_pos = 0;
macro_rules! read_bytes {
($byte_count: expr) => {
{
if ($byte_count as usize) > data.len() - read_pos {
return None;
}
read_pos += $byte_count as usize;
&data[read_pos - $byte_count as usize..read_pos]
}
}
}
let secp_ctx = Secp256k1::new();
macro_rules! unwrap_obj {
($key: expr) => {
match $key {
Ok(res) => res,
Err(_) => return None,
}
}
}
let _ver = read_bytes!(1)[0];
let min_ver = read_bytes!(1)[0];
if min_ver > SERIALIZATION_VERSION {
return None;
}
// Technically this can fail and serialize fail a round-trip, but only for serialization of
// barely-init'd ChannelMonitors that we can't do anything with.
let funding_txo = Some(OutPoint {
txid: Sha256dHash::from(read_bytes!(32)),
index: byte_utils::slice_to_be16(read_bytes!(2)),
});
let commitment_transaction_number_obscure_factor = byte_utils::slice_to_be48(read_bytes!(6));
let key_storage = match read_bytes!(1)[0] {
0 => {
KeyStorage::PrivMode {
revocation_base_key: unwrap_obj!(SecretKey::from_slice(&secp_ctx, read_bytes!(32))),
htlc_base_key: unwrap_obj!(SecretKey::from_slice(&secp_ctx, read_bytes!(32))),
}
},
_ => return None,
};
let delayed_payment_base_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)));
let their_htlc_base_key = Some(unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33))));
let their_cur_revocation_points = {
let first_idx = byte_utils::slice_to_be48(read_bytes!(6));
if first_idx == 0 {
None
} else {
let first_point = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)));
let second_point_slice = read_bytes!(33);
if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
Some((first_idx, first_point, None))
} else {
Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&secp_ctx, second_point_slice)))))
}
}
};
let our_to_self_delay = byte_utils::slice_to_be16(read_bytes!(2));
let their_to_self_delay = Some(byte_utils::slice_to_be16(read_bytes!(2)));
let mut old_secrets = [([0; 32], 1 << 48); 49];
for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() {
secret.copy_from_slice(read_bytes!(32));
*idx = byte_utils::slice_to_be64(read_bytes!(8));
}
macro_rules! read_htlc_in_commitment {
() => {
{
let offered = match read_bytes!(1)[0] {
0 => false, 1 => true,
_ => return None,
};
let amount_msat = byte_utils::slice_to_be64(read_bytes!(8));
let cltv_expiry = byte_utils::slice_to_be32(read_bytes!(4));
let mut payment_hash = [0; 32];
payment_hash[..].copy_from_slice(read_bytes!(32));
let transaction_output_index = byte_utils::slice_to_be32(read_bytes!(4));
HTLCOutputInCommitment {
offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
}
}
}
}
let remote_claimable_outpoints_len = byte_utils::slice_to_be64(read_bytes!(8));
if remote_claimable_outpoints_len > data.len() as u64 / 64 { return None; }
let mut remote_claimable_outpoints = HashMap::with_capacity(remote_claimable_outpoints_len as usize);
for _ in 0..remote_claimable_outpoints_len {
let txid = Sha256dHash::from(read_bytes!(32));
let outputs_count = byte_utils::slice_to_be64(read_bytes!(8));
if outputs_count > data.len() as u64 * 32 { return None; }
let mut outputs = Vec::with_capacity(outputs_count as usize);
for _ in 0..outputs_count {
outputs.push(read_htlc_in_commitment!());
}
if let Some(_) = remote_claimable_outpoints.insert(txid, outputs) {
return None;
}
}
let remote_commitment_txn_on_chain_len = byte_utils::slice_to_be64(read_bytes!(8));
if remote_commitment_txn_on_chain_len > data.len() as u64 / 32 { return None; }
let mut remote_commitment_txn_on_chain = HashMap::with_capacity(remote_commitment_txn_on_chain_len as usize);
for _ in 0..remote_commitment_txn_on_chain_len {
let txid = Sha256dHash::from(read_bytes!(32));
let commitment_number = byte_utils::slice_to_be48(read_bytes!(6));
if let Some(_) = remote_commitment_txn_on_chain.insert(txid, commitment_number) {
return None;
}
}
let remote_hash_commitment_number_len = byte_utils::slice_to_be64(read_bytes!(8));
if remote_hash_commitment_number_len > data.len() as u64 / 32 { return None; }
let mut remote_hash_commitment_number = HashMap::with_capacity(remote_hash_commitment_number_len as usize);
for _ in 0..remote_hash_commitment_number_len {
let mut txid = [0; 32];
txid[..].copy_from_slice(read_bytes!(32));
let commitment_number = byte_utils::slice_to_be48(read_bytes!(6));
if let Some(_) = remote_hash_commitment_number.insert(txid, commitment_number) {
return None;
}
}
macro_rules! read_local_tx {
() => {
{
let tx_len = byte_utils::slice_to_be64(read_bytes!(8));
let tx: Transaction = unwrap_obj!(serialize::deserialize(read_bytes!(tx_len)));
let revocation_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)));
let a_htlc_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)));
let b_htlc_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)));
let delayed_payment_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)));
let feerate_per_kw = byte_utils::slice_to_be64(read_bytes!(8));
let htlc_outputs_len = byte_utils::slice_to_be64(read_bytes!(8));
if htlc_outputs_len > data.len() as u64 / 128 { return None; }
let mut htlc_outputs = Vec::with_capacity(htlc_outputs_len as usize);
for _ in 0..htlc_outputs_len {
htlc_outputs.push((read_htlc_in_commitment!(),
unwrap_obj!(Signature::from_compact(&secp_ctx, read_bytes!(64))),
unwrap_obj!(Signature::from_compact(&secp_ctx, read_bytes!(64)))));
}
LocalSignedTx {
txid: tx.txid(),
tx, revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, feerate_per_kw, htlc_outputs
}
}
}
}
let prev_local_signed_commitment_tx = match read_bytes!(1)[0] {
0 => None,
1 => {
Some(read_local_tx!())
},
_ => return None,
};
let current_local_signed_commitment_tx = match read_bytes!(1)[0] {
0 => None,
1 => {
Some(read_local_tx!())
},
_ => return None,
};
let payment_preimages_len = byte_utils::slice_to_be64(read_bytes!(8));
if payment_preimages_len > data.len() as u64 / 32 { return None; }
let mut payment_preimages = HashMap::with_capacity(payment_preimages_len as usize);
let mut sha = Sha256::new();
for _ in 0..payment_preimages_len {
let mut preimage = [0; 32];
preimage[..].copy_from_slice(read_bytes!(32));
sha.reset();
sha.input(&preimage);
let mut hash = [0; 32];
sha.result(&mut hash);
if let Some(_) = payment_preimages.insert(hash, preimage) {
return None;
}
}
let destination_script_len = byte_utils::slice_to_be64(read_bytes!(8));
let destination_script = Script::from(read_bytes!(destination_script_len).to_vec());
Some(ChannelMonitor {
funding_txo,
commitment_transaction_number_obscure_factor,
key_storage,
delayed_payment_base_key,
their_htlc_base_key,
their_cur_revocation_points,
our_to_self_delay,
their_to_self_delay,
old_secrets,
remote_claimable_outpoints,
remote_commitment_txn_on_chain: Mutex::new(remote_commitment_txn_on_chain),
remote_hash_commitment_number,
prev_local_signed_commitment_tx,
current_local_signed_commitment_tx,
payment_preimages,
destination_script,
secp_ctx,
})
}
//TODO: Functions to serialize/deserialize (with different forms depending on which information
//we want to leave out (eg funding_txo, etc).
@ -591,10 +1017,10 @@ impl ChannelMonitor {
}
}
if !inputs.is_empty() || !txn_to_broadcast.is_empty() {
if !inputs.is_empty() || !txn_to_broadcast.is_empty() { // ie we're confident this is actually ours
// We're definitely a remote commitment transaction!
// TODO: Register commitment_txid with the ChainWatchInterface!
self.remote_htlc_outputs_on_chain.lock().unwrap().insert(commitment_txid, commitment_number);
self.remote_commitment_txn_on_chain.lock().unwrap().insert(commitment_txid, commitment_number);
}
if inputs.is_empty() { return txn_to_broadcast; } // Nothing to be done...probably a false positive/local tx
@ -619,6 +1045,15 @@ impl ChannelMonitor {
txn_to_broadcast.push(spend_tx);
} else if let Some(per_commitment_data) = per_commitment_option {
// While this isn't useful yet, there is a potential race where if a counterparty
// revokes a state at the same time as the commitment transaction for that state is
// confirmed, and the watchtower receives the block before the user, the user could
// upload a new ChannelMonitor with the revocation secret but the watchtower has
// already processed the block, resulting in the remote_commitment_txn_on_chain entry
// not being generated by the above conditional. Thus, to be safe, we go ahead and
// insert it here.
self.remote_commitment_txn_on_chain.lock().unwrap().insert(commitment_txid, commitment_number);
if let Some(revocation_points) = self.their_cur_revocation_points {
let revocation_point_option =
if revocation_points.0 == commitment_number { Some(&revocation_points.1) }
@ -723,7 +1158,7 @@ impl ChannelMonitor {
}
}
} else {
//TODO: For each input check if its in our remote_htlc_outputs_on_chain map!
//TODO: For each input check if its in our remote_commitment_txn_on_chain map!
}
txn_to_broadcast

View file

@ -11,6 +11,15 @@ pub fn slice_to_be32(v: &[u8]) -> u32 {
((v[3] as u32) << 8*0)
}
#[inline]
pub fn slice_to_be48(v: &[u8]) -> u64 {
((v[0] as u64) << 8*5) |
((v[1] as u64) << 8*4) |
((v[2] as u64) << 8*3) |
((v[3] as u64) << 8*2) |
((v[4] as u64) << 8*1) |
((v[5] as u64) << 8*0)
}
#[inline]
pub fn slice_to_be64(v: &[u8]) -> u64 {
((v[0] as u64) << 8*7) |
((v[1] as u64) << 8*6) |
@ -39,6 +48,18 @@ pub fn be32_to_array(u: u32) -> [u8; 4] {
v
}
#[inline]
pub fn be48_to_array(u: u64) -> [u8; 6] {
assert!(u & 0xffff_0000_0000_0000 == 0);
let mut v = [0; 6];
v[0] = ((u >> 8*5) & 0xff) as u8;
v[1] = ((u >> 8*4) & 0xff) as u8;
v[2] = ((u >> 8*3) & 0xff) as u8;
v[3] = ((u >> 8*2) & 0xff) as u8;
v[4] = ((u >> 8*1) & 0xff) as u8;
v[5] = ((u >> 8*0) & 0xff) as u8;
v
}
#[inline]
pub fn be64_to_array(u: u64) -> [u8; 8] {
let mut v = [0; 8];
v[0] = ((u >> 8*7) & 0xff) as u8;

View file

@ -30,6 +30,10 @@ impl TestChannelMonitor {
}
impl channelmonitor::ManyChannelMonitor for TestChannelMonitor {
fn add_update_monitor(&self, funding_txo: OutPoint, monitor: channelmonitor::ChannelMonitor) -> Result<(), channelmonitor::ChannelMonitorUpdateErr> {
// At every point where we get a monitor update, we should be able to send a useful monitor
// to a watchtower and disk...
assert!(channelmonitor::ChannelMonitor::deserialize(&monitor.serialize_for_disk()[..]).unwrap() == monitor);
monitor.serialize_for_watchtower(); // This at least shouldn't crash...
self.added_monitors.lock().unwrap().push((funding_txo, monitor.clone()));
self.simple_monitor.add_update_monitor(funding_txo, monitor)
}