rust-lightning/lightning/src/ln/monitor_tests.rs

537 lines
28 KiB
Rust
Raw Normal View History

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Further functional tests which test blockchain reorganizations.
use chain::channelmonitor::{ANTI_REORG_DELAY, Balance};
use chain::transaction::OutPoint;
use ln::channel;
use ln::channelmanager::BREAKDOWN_TIMEOUT;
use ln::features::InitFeatures;
use ln::msgs::ChannelMessageHandler;
use util::events::{Event, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
use bitcoin::blockdata::script::Builder;
use bitcoin::blockdata::opcodes;
use bitcoin::secp256k1::Secp256k1;
use prelude::*;
use ln::functional_test_utils::*;
#[test]
fn chanmon_fail_from_stale_commitment() {
// If we forward an HTLC to our counterparty, but we force-closed the channel before our
// counterparty provides us an updated commitment transaction, we'll end up with a commitment
// transaction that does not contain the HTLC which we attempted to forward. In this case, we
// need to wait `ANTI_REORG_DELAY` blocks and then fail back the HTLC as there is no way for us
// to learn the preimage and the confirmed commitment transaction paid us the value of the
// HTLC.
//
// However, previously, we did not do this, ignoring the HTLC entirely.
//
// This could lead to channel closure if the sender we received the HTLC from decides to go on
// chain to get their HTLC back before it times out.
//
// Here, we check exactly this case, forwarding a payment from A, through B, to C, before B
// broadcasts its latest commitment transaction, which should result in it eventually failing
// the HTLC back off-chain to A.
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
let (update_a, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known());
let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
check_added_monitors!(nodes[0], 1);
let bs_txn = get_local_commitment_txn!(nodes[1], chan_id_2);
let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
commitment_signed_dance!(nodes[1], nodes[0], updates.commitment_signed, false);
expect_pending_htlcs_forwardable!(nodes[1]);
get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
check_added_monitors!(nodes[1], 1);
// Don't bother delivering the new HTLC add/commits, instead confirming the pre-HTLC commitment
// transaction for nodes[1].
mine_transaction(&nodes[1], &bs_txn[0]);
check_added_monitors!(nodes[1], 1);
check_closed_broadcast!(nodes[1], true);
check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
expect_pending_htlcs_forwardable!(nodes[1]);
check_added_monitors!(nodes[1], 1);
let fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_updates.update_fail_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[1], fail_updates.commitment_signed, true, true);
expect_payment_failed_with_update!(nodes[0], payment_hash, false, update_a.contents.short_channel_id, true);
}
#[test]
fn chanmon_claim_value_coop_close() {
// Tests `get_claimable_balances` returns the correct values across a simple cooperative claim.
// Specifically, this tests that the channel non-HTLC balances show up in
// `get_claimable_balances` until the cooperative claims have confirmed and generated a
// `SpendableOutputs` event, and no longer.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let (_, _, chan_id, funding_tx) =
create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 1_000_000, InitFeatures::known(), InitFeatures::known());
let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 };
assert_eq!(funding_outpoint.to_channel_id(), chan_id);
let chan_feerate = get_feerate!(nodes[0], chan_id) as u64;
assert_eq!(vec![Balance::ClaimableOnChannelClose {
claimable_amount_satoshis: 1_000_000 - 1_000 - chan_feerate * channel::COMMITMENT_TX_BASE_WEIGHT / 1000
}],
nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
assert_eq!(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000, }],
nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
nodes[0].node.close_channel(&chan_id).unwrap();
let node_0_shutdown = get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id());
nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &InitFeatures::known(), &node_0_shutdown);
let node_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &InitFeatures::known(), &node_1_shutdown);
let node_0_closing_signed = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &node_0_closing_signed);
let node_1_closing_signed = get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id());
nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &node_1_closing_signed);
let (_, node_0_2nd_closing_signed) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &node_0_2nd_closing_signed.unwrap());
let (_, node_1_none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
assert!(node_1_none.is_none());
let shutdown_tx = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(shutdown_tx, nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0));
assert_eq!(shutdown_tx.len(), 1);
mine_transaction(&nodes[0], &shutdown_tx[0]);
mine_transaction(&nodes[1], &shutdown_tx[0]);
assert!(nodes[0].node.list_channels().is_empty());
assert!(nodes[1].node.list_channels().is_empty());
assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
assert_eq!(vec![Balance::ClaimableAwaitingConfirmations {
claimable_amount_satoshis: 1_000_000 - 1_000 - chan_feerate * channel::COMMITMENT_TX_BASE_WEIGHT / 1000,
confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1,
}],
nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
assert_eq!(vec![Balance::ClaimableAwaitingConfirmations {
claimable_amount_satoshis: 1000,
confirmation_height: nodes[1].best_block_info().1 + ANTI_REORG_DELAY - 1,
}],
nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
assert_eq!(Vec::<Balance>::new(),
nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
assert_eq!(Vec::<Balance>::new(),
nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
let mut node_a_spendable = nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events();
assert_eq!(node_a_spendable.len(), 1);
if let Event::SpendableOutputs { outputs } = node_a_spendable.pop().unwrap() {
assert_eq!(outputs.len(), 1);
let spend_tx = nodes[0].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(),
Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap();
check_spends!(spend_tx, shutdown_tx[0]);
}
let mut node_b_spendable = nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events();
assert_eq!(node_b_spendable.len(), 1);
if let Event::SpendableOutputs { outputs } = node_b_spendable.pop().unwrap() {
assert_eq!(outputs.len(), 1);
let spend_tx = nodes[1].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(),
Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap();
check_spends!(spend_tx, shutdown_tx[0]);
}
check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
}
fn sorted_vec<T: Ord>(mut v: Vec<T>) -> Vec<T> {
v.sort_unstable();
v
}
fn do_test_claim_value_force_close(prev_commitment_tx: bool) {
// Tests `get_claimable_balances` with an HTLC across a force-close.
// We build a channel with an HTLC pending, then force close the channel and check that the
// `get_claimable_balances` return value is correct as transactions confirm on-chain.
let mut chanmon_cfgs = create_chanmon_cfgs(2);
if prev_commitment_tx {
// We broadcast a second-to-latest commitment transaction, without providing the revocation
// secret to the counterparty. However, because we always immediately take the revocation
// secret from the keys_manager, we would panic at broadcast as we're trying to sign a
// transaction which, from the point of view of our keys_manager, is revoked.
chanmon_cfgs[1].keys_manager.disable_revocation_policy_check = true;
}
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let (_, _, chan_id, funding_tx) =
create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 1_000_000, InitFeatures::known(), InitFeatures::known());
let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 };
assert_eq!(funding_outpoint.to_channel_id(), chan_id);
// This HTLC is immediately claimed, giving node B the preimage
let payment_preimage = route_payment(&nodes[0], &[&nodes[1]], 3_000_000).0;
// This HTLC is allowed to time out, letting A claim it. However, in order to test claimable
// balances more fully we also give B the preimage for this HTLC.
let (timeout_payment_preimage, timeout_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 4_000_000);
// This HTLC will be dust, and not be claimable at all:
let (dust_payment_preimage, dust_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 3_000);
let htlc_cltv_timeout = nodes[0].best_block_info().1 + TEST_FINAL_CLTV + 1; // Note ChannelManager adds one to CLTV timeouts for safety
let chan_feerate = get_feerate!(nodes[0], chan_id) as u64;
let remote_txn = get_local_commitment_txn!(nodes[1], chan_id);
// Before B receives the payment preimage, it only suggests the push_msat value of 1_000 sats
// as claimable. A lists both its to-self balance and the (possibly-claimable) HTLCs.
assert_eq!(sorted_vec(vec![Balance::ClaimableOnChannelClose {
claimable_amount_satoshis: 1_000_000 - 3_000 - 4_000 - 1_000 - 3 - chan_feerate *
(channel::COMMITMENT_TX_BASE_WEIGHT + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000,
}, Balance::MaybeClaimableHTLCAwaitingTimeout {
claimable_amount_satoshis: 3_000,
claimable_height: htlc_cltv_timeout,
}, Balance::MaybeClaimableHTLCAwaitingTimeout {
claimable_amount_satoshis: 4_000,
claimable_height: htlc_cltv_timeout,
}]),
sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()));
assert_eq!(vec![Balance::ClaimableOnChannelClose {
claimable_amount_satoshis: 1_000,
}],
nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
nodes[1].node.claim_funds(payment_preimage);
check_added_monitors!(nodes[1], 1);
let b_htlc_msgs = get_htlc_update_msgs!(&nodes[1], nodes[0].node.get_our_node_id());
// We claim the dust payment here as well, but it won't impact our claimable balances as its
// dust and thus doesn't appear on chain at all.
nodes[1].node.claim_funds(dust_payment_preimage);
check_added_monitors!(nodes[1], 1);
nodes[1].node.claim_funds(timeout_payment_preimage);
check_added_monitors!(nodes[1], 1);
if prev_commitment_tx {
// To build a previous commitment transaction, deliver one round of commitment messages.
nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &b_htlc_msgs.update_fulfill_htlcs[0]);
expect_payment_sent_without_paths!(nodes[0], payment_preimage);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &b_htlc_msgs.commitment_signed);
check_added_monitors!(nodes[0], 1);
let (as_raa, as_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_raa);
let _htlc_updates = get_htlc_update_msgs!(&nodes[1], nodes[0].node.get_our_node_id());
check_added_monitors!(nodes[1], 1);
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_cs);
let _bs_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
check_added_monitors!(nodes[1], 1);
}
// Once B has received the payment preimage, it includes the value of the HTLC in its
// "claimable if you were to close the channel" balance.
let mut a_expected_balances = vec![Balance::ClaimableOnChannelClose {
claimable_amount_satoshis: 1_000_000 - // Channel funding value in satoshis
4_000 - // The to-be-failed HTLC value in satoshis
3_000 - // The claimed HTLC value in satoshis
1_000 - // The push_msat value in satoshis
3 - // The dust HTLC value in satoshis
// The commitment transaction fee with two HTLC outputs:
chan_feerate * (channel::COMMITMENT_TX_BASE_WEIGHT +
if prev_commitment_tx { 1 } else { 2 } *
channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000,
}, Balance::MaybeClaimableHTLCAwaitingTimeout {
claimable_amount_satoshis: 4_000,
claimable_height: htlc_cltv_timeout,
}];
if !prev_commitment_tx {
a_expected_balances.push(Balance::MaybeClaimableHTLCAwaitingTimeout {
claimable_amount_satoshis: 3_000,
claimable_height: htlc_cltv_timeout,
});
}
assert_eq!(sorted_vec(a_expected_balances),
sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()));
assert_eq!(vec![Balance::ClaimableOnChannelClose {
claimable_amount_satoshis: 1_000 + 3_000 + 4_000,
}],
nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
// Broadcast the closing transaction (which has both pending HTLCs in it) and get B's
// broadcasted HTLC claim transaction with preimage.
let node_b_commitment_claimable = nodes[1].best_block_info().1 + BREAKDOWN_TIMEOUT as u32;
mine_transaction(&nodes[0], &remote_txn[0]);
mine_transaction(&nodes[1], &remote_txn[0]);
let b_broadcast_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(b_broadcast_txn.len(), if prev_commitment_tx { 4 } else { 5 });
if prev_commitment_tx {
check_spends!(b_broadcast_txn[3], b_broadcast_txn[2]);
} else {
assert_eq!(b_broadcast_txn[0], b_broadcast_txn[3]);
assert_eq!(b_broadcast_txn[1], b_broadcast_txn[4]);
}
// b_broadcast_txn[0] should spend the HTLC output of the commitment tx for 3_000 sats
check_spends!(b_broadcast_txn[0], remote_txn[0]);
check_spends!(b_broadcast_txn[1], remote_txn[0]);
assert_eq!(b_broadcast_txn[0].input.len(), 1);
assert_eq!(b_broadcast_txn[1].input.len(), 1);
assert_eq!(remote_txn[0].output[b_broadcast_txn[0].input[0].previous_output.vout as usize].value, 3_000);
assert_eq!(remote_txn[0].output[b_broadcast_txn[1].input[0].previous_output.vout as usize].value, 4_000);
check_spends!(b_broadcast_txn[2], funding_tx);
assert!(nodes[0].node.list_channels().is_empty());
check_closed_broadcast!(nodes[0], true);
check_added_monitors!(nodes[0], 1);
check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed);
assert!(nodes[1].node.list_channels().is_empty());
check_closed_broadcast!(nodes[1], true);
check_added_monitors!(nodes[1], 1);
check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
// Once the commitment transaction confirms, we will wait until ANTI_REORG_DELAY until we
// generate any `SpendableOutputs` events. Thus, the same balances will still be listed
// available in `get_claimable_balances`. However, both will swap from `ClaimableOnClose` to
// other Balance variants, as close has already happened.
assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations {
claimable_amount_satoshis: 1_000_000 - 3_000 - 4_000 - 1_000 - 3 - chan_feerate *
(channel::COMMITMENT_TX_BASE_WEIGHT + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000,
confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1,
}, Balance::MaybeClaimableHTLCAwaitingTimeout {
claimable_amount_satoshis: 3_000,
claimable_height: htlc_cltv_timeout,
}, Balance::MaybeClaimableHTLCAwaitingTimeout {
claimable_amount_satoshis: 4_000,
claimable_height: htlc_cltv_timeout,
}]),
sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()));
// The main non-HTLC balance is just awaiting confirmations, but the claimable height is the
// CSV delay, not ANTI_REORG_DELAY.
assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations {
claimable_amount_satoshis: 1_000,
confirmation_height: node_b_commitment_claimable,
},
// Both HTLC balances are "contentious" as our counterparty could claim them if we wait too
// long.
Balance::ContentiousClaimable {
claimable_amount_satoshis: 3_000,
timeout_height: htlc_cltv_timeout,
}, Balance::ContentiousClaimable {
claimable_amount_satoshis: 4_000,
timeout_height: htlc_cltv_timeout,
}]),
sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()));
connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
expect_payment_failed!(nodes[0], dust_payment_hash, true);
connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
// After ANTI_REORG_DELAY, A will consider its balance fully spendable and generate a
// `SpendableOutputs` event. However, B still has to wait for the CSV delay.
assert_eq!(sorted_vec(vec![Balance::MaybeClaimableHTLCAwaitingTimeout {
claimable_amount_satoshis: 3_000,
claimable_height: htlc_cltv_timeout,
}, Balance::MaybeClaimableHTLCAwaitingTimeout {
claimable_amount_satoshis: 4_000,
claimable_height: htlc_cltv_timeout,
}]),
sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()));
assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations {
claimable_amount_satoshis: 1_000,
confirmation_height: node_b_commitment_claimable,
}, Balance::ContentiousClaimable {
claimable_amount_satoshis: 3_000,
timeout_height: htlc_cltv_timeout,
}, Balance::ContentiousClaimable {
claimable_amount_satoshis: 4_000,
timeout_height: htlc_cltv_timeout,
}]),
sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()));
let mut node_a_spendable = nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events();
assert_eq!(node_a_spendable.len(), 1);
if let Event::SpendableOutputs { outputs } = node_a_spendable.pop().unwrap() {
assert_eq!(outputs.len(), 1);
let spend_tx = nodes[0].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(),
Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap();
check_spends!(spend_tx, remote_txn[0]);
}
assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
// After broadcasting the HTLC claim transaction, node A will still consider the HTLC
// possibly-claimable up to ANTI_REORG_DELAY, at which point it will drop it.
mine_transaction(&nodes[0], &b_broadcast_txn[0]);
if prev_commitment_tx {
expect_payment_path_successful!(nodes[0]);
} else {
expect_payment_sent!(nodes[0], payment_preimage);
}
assert_eq!(sorted_vec(vec![Balance::MaybeClaimableHTLCAwaitingTimeout {
claimable_amount_satoshis: 3_000,
claimable_height: htlc_cltv_timeout,
}, Balance::MaybeClaimableHTLCAwaitingTimeout {
claimable_amount_satoshis: 4_000,
claimable_height: htlc_cltv_timeout,
}]),
sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()));
connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
assert_eq!(vec![Balance::MaybeClaimableHTLCAwaitingTimeout {
claimable_amount_satoshis: 4_000,
claimable_height: htlc_cltv_timeout,
}],
nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
// When the HTLC timeout output is spendable in the next block, A should broadcast it
connect_blocks(&nodes[0], htlc_cltv_timeout - nodes[0].best_block_info().1 - 1);
let a_broadcast_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(a_broadcast_txn.len(), 3);
check_spends!(a_broadcast_txn[0], funding_tx);
assert_eq!(a_broadcast_txn[1].input.len(), 1);
check_spends!(a_broadcast_txn[1], remote_txn[0]);
assert_eq!(a_broadcast_txn[2].input.len(), 1);
check_spends!(a_broadcast_txn[2], remote_txn[0]);
assert_ne!(a_broadcast_txn[1].input[0].previous_output.vout,
a_broadcast_txn[2].input[0].previous_output.vout);
// a_broadcast_txn [1] and [2] should spend the HTLC outputs of the commitment tx
assert_eq!(remote_txn[0].output[a_broadcast_txn[1].input[0].previous_output.vout as usize].value, 3_000);
assert_eq!(remote_txn[0].output[a_broadcast_txn[2].input[0].previous_output.vout as usize].value, 4_000);
// Once the HTLC-Timeout transaction confirms, A will no longer consider the HTLC
// "MaybeClaimable", but instead move it to "AwaitingConfirmations".
mine_transaction(&nodes[0], &a_broadcast_txn[2]);
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
assert_eq!(vec![Balance::ClaimableAwaitingConfirmations {
claimable_amount_satoshis: 4_000,
confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1,
}],
nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
// After ANTI_REORG_DELAY, A will generate a SpendableOutputs event and drop the claimable
// balance entry.
connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
assert_eq!(Vec::<Balance>::new(),
nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
expect_payment_failed!(nodes[0], timeout_payment_hash, true);
let mut node_a_spendable = nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events();
assert_eq!(node_a_spendable.len(), 1);
if let Event::SpendableOutputs { outputs } = node_a_spendable.pop().unwrap() {
assert_eq!(outputs.len(), 1);
let spend_tx = nodes[0].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(),
Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap();
check_spends!(spend_tx, a_broadcast_txn[2]);
} else { panic!(); }
// Node B will no longer consider the HTLC "contentious" after the HTLC claim transaction
// confirms, and consider it simply "awaiting confirmations". Note that it has to wait for the
// standard revocable transaction CSV delay before receiving a `SpendableOutputs`.
let node_b_htlc_claimable = nodes[1].best_block_info().1 + BREAKDOWN_TIMEOUT as u32;
mine_transaction(&nodes[1], &b_broadcast_txn[0]);
assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations {
claimable_amount_satoshis: 1_000,
confirmation_height: node_b_commitment_claimable,
}, Balance::ClaimableAwaitingConfirmations {
claimable_amount_satoshis: 3_000,
confirmation_height: node_b_htlc_claimable,
}, Balance::ContentiousClaimable {
claimable_amount_satoshis: 4_000,
timeout_height: htlc_cltv_timeout,
}]),
sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()));
// After reaching the commitment output CSV, we'll get a SpendableOutputs event for it and have
// only the HTLCs claimable on node B.
connect_blocks(&nodes[1], node_b_commitment_claimable - nodes[1].best_block_info().1);
let mut node_b_spendable = nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events();
assert_eq!(node_b_spendable.len(), 1);
if let Event::SpendableOutputs { outputs } = node_b_spendable.pop().unwrap() {
assert_eq!(outputs.len(), 1);
let spend_tx = nodes[1].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(),
Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap();
check_spends!(spend_tx, remote_txn[0]);
}
assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations {
claimable_amount_satoshis: 3_000,
confirmation_height: node_b_htlc_claimable,
}, Balance::ContentiousClaimable {
claimable_amount_satoshis: 4_000,
timeout_height: htlc_cltv_timeout,
}]),
sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()));
// After reaching the claimed HTLC output CSV, we'll get a SpendableOutptus event for it and
// have only one HTLC output left spendable.
connect_blocks(&nodes[1], node_b_htlc_claimable - nodes[1].best_block_info().1);
let mut node_b_spendable = nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events();
assert_eq!(node_b_spendable.len(), 1);
if let Event::SpendableOutputs { outputs } = node_b_spendable.pop().unwrap() {
assert_eq!(outputs.len(), 1);
let spend_tx = nodes[1].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(),
Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap();
check_spends!(spend_tx, b_broadcast_txn[0]);
} else { panic!(); }
assert_eq!(vec![Balance::ContentiousClaimable {
claimable_amount_satoshis: 4_000,
timeout_height: htlc_cltv_timeout,
}],
nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
// Finally, mine the HTLC timeout transaction that A broadcasted (even though B should be able
// to claim this HTLC with the preimage it knows!). It will remain listed as a claimable HTLC
// until ANTI_REORG_DELAY confirmations on the spend.
mine_transaction(&nodes[1], &a_broadcast_txn[2]);
assert_eq!(vec![Balance::ContentiousClaimable {
claimable_amount_satoshis: 4_000,
timeout_height: htlc_cltv_timeout,
}],
nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
assert_eq!(Vec::<Balance>::new(),
nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances());
}
#[test]
fn test_claim_value_force_close() {
do_test_claim_value_force_close(true);
do_test_claim_value_force_close(false);
}