rust-lightning/lightning/src/ln/onchaintx.rs

1063 lines
46 KiB
Rust
Raw Normal View History

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! The logic to build claims and bump in-flight transactions until confirmations.
//!
//! OnchainTxHandler objects are fully-part of ChannelMonitor and encapsulates all
//! building, tracking, bumping and notifications functions.
use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, SigHashType};
use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
use bitcoin::blockdata::script::Script;
use bitcoin::hash_types::Txid;
2020-04-27 16:51:59 +02:00
use bitcoin::secp256k1::{Secp256k1, Signature};
use bitcoin::secp256k1;
use ln::msgs::DecodeError;
use ln::PaymentPreimage;
use ln::chan_utils;
use ln::chan_utils::{TxCreationKeys, ChannelTransactionParameters, HolderCommitmentTransaction};
use chain::chaininterface::{FeeEstimator, BroadcasterInterface, ConfirmationTarget, MIN_RELAY_FEE_SAT_PER_1000_WEIGHT};
use chain::channelmonitor::{ANTI_REORG_DELAY, CLTV_SHARED_CLAIM_BUFFER, InputMaterial, ClaimRequest};
use chain::keysinterface::{Sign, KeysInterface};
use util::logger::Logger;
use util::ser::{Readable, ReadableArgs, Writer, Writeable, VecWriter};
use util::byte_utils;
use std::collections::HashMap;
use std::cmp;
use std::ops::Deref;
use std::mem::replace;
const MAX_ALLOC_SIZE: usize = 64*1024;
/// An entry for an [`OnchainEvent`], stating the block height when the event was observed and the
/// transaction causing it.
///
/// Used to determine when the on-chain event can be considered safe from a chain reorganization.
#[derive(PartialEq)]
struct OnchainEventEntry {
txid: Txid,
height: u32,
event: OnchainEvent,
}
impl OnchainEventEntry {
fn confirmation_threshold(&self) -> u32 {
self.height + ANTI_REORG_DELAY - 1
}
fn has_reached_confirmation_threshold(&self, height: u32) -> bool {
height >= self.confirmation_threshold()
}
}
/// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
/// once they mature to enough confirmations (ANTI_REORG_DELAY)
#[derive(PartialEq)]
enum OnchainEvent {
/// Outpoint under claim process by our own tx, once this one get enough confirmations, we remove it from
/// bump-txn candidate buffer.
Claim {
claim_request: Txid,
},
/// Claim tx aggregate multiple claimable outpoints. One of the outpoint may be claimed by a counterparty party tx.
/// In this case, we need to drop the outpoint and regenerate a new claim tx. By safety, we keep tracking
/// the outpoint to be sure to resurect it back to the claim tx if reorgs happen.
ContentiousOutpoint {
outpoint: BitcoinOutPoint,
input_material: InputMaterial,
}
}
/// Higher-level cache structure needed to re-generate bumped claim txn if needed
#[derive(Clone, PartialEq)]
pub struct ClaimTxBumpMaterial {
// At every block tick, used to check if pending claiming tx is taking too
// much time for confirmation and we need to bump it.
height_timer: Option<u32>,
// Tracked in case of reorg to wipe out now-superflous bump material
feerate_previous: u32,
// Soonest timelocks among set of outpoints claimed, used to compute
// a priority of not feerate
soonest_timelock: u32,
// Cache of script, pubkey, sig or key to solve claimable outputs scriptpubkey.
per_input_material: HashMap<BitcoinOutPoint, InputMaterial>,
}
impl Writeable for ClaimTxBumpMaterial {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
self.height_timer.write(writer)?;
writer.write_all(&byte_utils::be32_to_array(self.feerate_previous))?;
writer.write_all(&byte_utils::be32_to_array(self.soonest_timelock))?;
writer.write_all(&byte_utils::be64_to_array(self.per_input_material.len() as u64))?;
for (outp, tx_material) in self.per_input_material.iter() {
outp.write(writer)?;
tx_material.write(writer)?;
}
Ok(())
}
}
impl Readable for ClaimTxBumpMaterial {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
let height_timer = Readable::read(reader)?;
let feerate_previous = Readable::read(reader)?;
let soonest_timelock = Readable::read(reader)?;
let per_input_material_len: u64 = Readable::read(reader)?;
let mut per_input_material = HashMap::with_capacity(cmp::min(per_input_material_len as usize, MAX_ALLOC_SIZE / 128));
for _ in 0 ..per_input_material_len {
let outpoint = Readable::read(reader)?;
let input_material = Readable::read(reader)?;
per_input_material.insert(outpoint, input_material);
}
Ok(Self { height_timer, feerate_previous, soonest_timelock, per_input_material })
}
}
#[derive(PartialEq, Clone, Copy)]
pub(crate) enum InputDescriptors {
RevokedOfferedHTLC,
RevokedReceivedHTLC,
OfferedHTLC,
ReceivedHTLC,
RevokedOutput, // either a revoked to_holder output on commitment tx, a revoked HTLC-Timeout output or a revoked HTLC-Success output
}
impl Writeable for InputDescriptors {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
&InputDescriptors::RevokedOfferedHTLC => {
writer.write_all(&[0; 1])?;
},
&InputDescriptors::RevokedReceivedHTLC => {
writer.write_all(&[1; 1])?;
},
&InputDescriptors::OfferedHTLC => {
writer.write_all(&[2; 1])?;
},
&InputDescriptors::ReceivedHTLC => {
writer.write_all(&[3; 1])?;
}
&InputDescriptors::RevokedOutput => {
writer.write_all(&[4; 1])?;
}
}
Ok(())
}
}
impl Readable for InputDescriptors {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
let input_descriptor = match <u8 as Readable>::read(reader)? {
0 => {
InputDescriptors::RevokedOfferedHTLC
},
1 => {
InputDescriptors::RevokedReceivedHTLC
},
2 => {
InputDescriptors::OfferedHTLC
},
3 => {
InputDescriptors::ReceivedHTLC
},
4 => {
InputDescriptors::RevokedOutput
}
_ => return Err(DecodeError::InvalidValue),
};
Ok(input_descriptor)
}
}
macro_rules! subtract_high_prio_fee {
($logger: ident, $fee_estimator: expr, $value: expr, $predicted_weight: expr, $used_feerate: expr) => {
{
$used_feerate = $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::HighPriority).into();
let mut fee = $used_feerate as u64 * $predicted_weight / 1000;
if $value <= fee {
$used_feerate = $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal).into();
fee = $used_feerate as u64 * $predicted_weight / 1000;
if $value <= fee.into() {
$used_feerate = $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Background).into();
fee = $used_feerate as u64 * $predicted_weight / 1000;
if $value <= fee {
log_error!($logger, "Failed to generate an on-chain punishment tx as even low priority fee ({} sat) was more than the entire claim balance ({} sat)",
fee, $value);
false
} else {
log_warn!($logger, "Used low priority fee for on-chain punishment tx as high priority fee was more than the entire claim balance ({} sat)",
$value);
$value -= fee;
true
}
} else {
log_warn!($logger, "Used medium priority fee for on-chain punishment tx as high priority fee was more than the entire claim balance ({} sat)",
$value);
$value -= fee;
true
}
} else {
$value -= fee;
true
}
}
}
}
impl Readable for Option<Vec<Option<(usize, Signature)>>> {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
match Readable::read(reader)? {
0u8 => Ok(None),
1u8 => {
let vlen: u64 = Readable::read(reader)?;
let mut ret = Vec::with_capacity(cmp::min(vlen as usize, MAX_ALLOC_SIZE / ::std::mem::size_of::<Option<(usize, Signature)>>()));
for _ in 0..vlen {
ret.push(match Readable::read(reader)? {
0u8 => None,
1u8 => Some((<u64 as Readable>::read(reader)? as usize, Readable::read(reader)?)),
_ => return Err(DecodeError::InvalidValue)
});
}
Ok(Some(ret))
},
_ => Err(DecodeError::InvalidValue),
}
}
}
impl Writeable for Option<Vec<Option<(usize, Signature)>>> {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
&Some(ref vec) => {
1u8.write(writer)?;
(vec.len() as u64).write(writer)?;
for opt in vec.iter() {
match opt {
&Some((ref idx, ref sig)) => {
1u8.write(writer)?;
(*idx as u64).write(writer)?;
sig.write(writer)?;
},
&None => 0u8.write(writer)?,
}
}
},
&None => 0u8.write(writer)?,
}
Ok(())
}
}
/// OnchainTxHandler receives claiming requests, aggregates them if it's sound, broadcast and
/// do RBF bumping if possible.
pub struct OnchainTxHandler<ChannelSigner: Sign> {
destination_script: Script,
holder_commitment: HolderCommitmentTransaction,
// holder_htlc_sigs and prev_holder_htlc_sigs are in the order as they appear in the commitment
// transaction outputs (hence the Option<>s inside the Vec). The first usize is the index in
// the set of HTLCs in the HolderCommitmentTransaction.
holder_htlc_sigs: Option<Vec<Option<(usize, Signature)>>>,
prev_holder_commitment: Option<HolderCommitmentTransaction>,
prev_holder_htlc_sigs: Option<Vec<Option<(usize, Signature)>>>,
signer: ChannelSigner,
pub(crate) channel_transaction_parameters: ChannelTransactionParameters,
// Used to track claiming requests. If claim tx doesn't confirm before height timer expiration we need to bump
// it (RBF or CPFP). If an input has been part of an aggregate tx at first claim try, we need to keep it within
// another bumped aggregate tx to comply with RBF rules. We may have multiple claiming txn in the flight for the
// same set of outpoints. One of the outpoints may be spent by a transaction not issued by us. That's why at
// block connection we scan all inputs and if any of them is among a set of a claiming request we test for set
// equality between spending transaction and claim request. If true, it means transaction was one our claiming one
// after a security delay of 6 blocks we remove pending claim request. If false, it means transaction wasn't and
// we need to regenerate new claim request with reduced set of still-claimable outpoints.
// Key is identifier of the pending claim request, i.e the txid of the initial claiming transaction generated by
// us and is immutable until all outpoint of the claimable set are post-anti-reorg-delay solved.
// Entry is cache of elements need to generate a bumped claiming transaction (see ClaimTxBumpMaterial)
#[cfg(test)] // Used in functional_test to verify sanitization
pub pending_claim_requests: HashMap<Txid, ClaimTxBumpMaterial>,
#[cfg(not(test))]
pending_claim_requests: HashMap<Txid, ClaimTxBumpMaterial>,
// Used to link outpoints claimed in a connected block to a pending claim request.
// Key is outpoint than monitor parsing has detected we have keys/scripts to claim
// Value is (pending claim request identifier, confirmation_block), identifier
// is txid of the initial claiming transaction and is immutable until outpoint is
// post-anti-reorg-delay solved, confirmaiton_block is used to erase entry if
// block with output gets disconnected.
#[cfg(test)] // Used in functional_test to verify sanitization
pub claimable_outpoints: HashMap<BitcoinOutPoint, (Txid, u32)>,
#[cfg(not(test))]
claimable_outpoints: HashMap<BitcoinOutPoint, (Txid, u32)>,
onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
latest_height: u32,
secp_ctx: Secp256k1<secp256k1::All>,
}
impl<ChannelSigner: Sign> OnchainTxHandler<ChannelSigner> {
pub(crate) fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
self.destination_script.write(writer)?;
self.holder_commitment.write(writer)?;
self.holder_htlc_sigs.write(writer)?;
self.prev_holder_commitment.write(writer)?;
self.prev_holder_htlc_sigs.write(writer)?;
self.channel_transaction_parameters.write(writer)?;
let mut key_data = VecWriter(Vec::new());
self.signer.write(&mut key_data)?;
assert!(key_data.0.len() < std::usize::MAX);
assert!(key_data.0.len() < std::u32::MAX as usize);
(key_data.0.len() as u32).write(writer)?;
writer.write_all(&key_data.0[..])?;
writer.write_all(&byte_utils::be64_to_array(self.pending_claim_requests.len() as u64))?;
for (ref ancestor_claim_txid, claim_tx_data) in self.pending_claim_requests.iter() {
ancestor_claim_txid.write(writer)?;
claim_tx_data.write(writer)?;
}
writer.write_all(&byte_utils::be64_to_array(self.claimable_outpoints.len() as u64))?;
for (ref outp, ref claim_and_height) in self.claimable_outpoints.iter() {
outp.write(writer)?;
claim_and_height.0.write(writer)?;
claim_and_height.1.write(writer)?;
}
writer.write_all(&byte_utils::be64_to_array(self.onchain_events_awaiting_threshold_conf.len() as u64))?;
for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
entry.txid.write(writer)?;
writer.write_all(&byte_utils::be32_to_array(entry.height))?;
match entry.event {
OnchainEvent::Claim { ref claim_request } => {
writer.write_all(&[0; 1])?;
claim_request.write(writer)?;
},
OnchainEvent::ContentiousOutpoint { ref outpoint, ref input_material } => {
writer.write_all(&[1; 1])?;
outpoint.write(writer)?;
input_material.write(writer)?;
}
}
}
self.latest_height.write(writer)?;
Ok(())
}
}
impl<'a, K: KeysInterface> ReadableArgs<&'a K> for OnchainTxHandler<K::Signer> {
fn read<R: ::std::io::Read>(reader: &mut R, keys_manager: &'a K) -> Result<Self, DecodeError> {
let destination_script = Readable::read(reader)?;
let holder_commitment = Readable::read(reader)?;
let holder_htlc_sigs = Readable::read(reader)?;
let prev_holder_commitment = Readable::read(reader)?;
let prev_holder_htlc_sigs = Readable::read(reader)?;
let channel_parameters = Readable::read(reader)?;
let keys_len: u32 = Readable::read(reader)?;
let mut keys_data = Vec::with_capacity(cmp::min(keys_len as usize, MAX_ALLOC_SIZE));
while keys_data.len() != keys_len as usize {
// Read 1KB at a time to avoid accidentally allocating 4GB on corrupted channel keys
let mut data = [0; 1024];
let read_slice = &mut data[0..cmp::min(1024, keys_len as usize - keys_data.len())];
reader.read_exact(read_slice)?;
keys_data.extend_from_slice(read_slice);
}
let signer = keys_manager.read_chan_signer(&keys_data)?;
let pending_claim_requests_len: u64 = Readable::read(reader)?;
let mut pending_claim_requests = HashMap::with_capacity(cmp::min(pending_claim_requests_len as usize, MAX_ALLOC_SIZE / 128));
for _ in 0..pending_claim_requests_len {
pending_claim_requests.insert(Readable::read(reader)?, Readable::read(reader)?);
}
let claimable_outpoints_len: u64 = Readable::read(reader)?;
let mut claimable_outpoints = HashMap::with_capacity(cmp::min(pending_claim_requests_len as usize, MAX_ALLOC_SIZE / 128));
for _ in 0..claimable_outpoints_len {
let outpoint = Readable::read(reader)?;
let ancestor_claim_txid = Readable::read(reader)?;
let height = Readable::read(reader)?;
claimable_outpoints.insert(outpoint, (ancestor_claim_txid, height));
}
let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
for _ in 0..waiting_threshold_conf_len {
let txid = Readable::read(reader)?;
let height = Readable::read(reader)?;
let event = match <u8 as Readable>::read(reader)? {
0 => {
let claim_request = Readable::read(reader)?;
OnchainEvent::Claim {
claim_request
}
},
1 => {
let outpoint = Readable::read(reader)?;
let input_material = Readable::read(reader)?;
OnchainEvent::ContentiousOutpoint {
outpoint,
input_material
}
}
_ => return Err(DecodeError::InvalidValue),
};
onchain_events_awaiting_threshold_conf.push(OnchainEventEntry { txid, height, event });
}
let latest_height = Readable::read(reader)?;
let mut secp_ctx = Secp256k1::new();
secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
Ok(OnchainTxHandler {
destination_script,
holder_commitment,
holder_htlc_sigs,
prev_holder_commitment,
prev_holder_htlc_sigs,
signer,
channel_transaction_parameters: channel_parameters,
claimable_outpoints,
pending_claim_requests,
onchain_events_awaiting_threshold_conf,
latest_height,
secp_ctx,
})
}
}
impl<ChannelSigner: Sign> OnchainTxHandler<ChannelSigner> {
pub(crate) fn new(destination_script: Script, signer: ChannelSigner, channel_parameters: ChannelTransactionParameters, holder_commitment: HolderCommitmentTransaction, secp_ctx: Secp256k1<secp256k1::All>) -> Self {
OnchainTxHandler {
destination_script,
holder_commitment,
holder_htlc_sigs: None,
prev_holder_commitment: None,
prev_holder_htlc_sigs: None,
signer,
channel_transaction_parameters: channel_parameters,
pending_claim_requests: HashMap::new(),
claimable_outpoints: HashMap::new(),
onchain_events_awaiting_threshold_conf: Vec::new(),
latest_height: 0,
secp_ctx,
}
}
pub(crate) fn get_witnesses_weight(inputs: &[InputDescriptors]) -> usize {
let mut tx_weight = 2; // count segwit flags
for inp in inputs {
// We use expected weight (and not actual) as signatures and time lock delays may vary
tx_weight += match inp {
// number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
&InputDescriptors::RevokedOfferedHTLC => {
1 + 1 + 73 + 1 + 33 + 1 + 133
},
// number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
&InputDescriptors::RevokedReceivedHTLC => {
1 + 1 + 73 + 1 + 33 + 1 + 139
},
// number_of_witness_elements + sig_length + counterpartyhtlc_sig + preimage_length + preimage + witness_script_length + witness_script
&InputDescriptors::OfferedHTLC => {
1 + 1 + 73 + 1 + 32 + 1 + 133
},
// number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
&InputDescriptors::ReceivedHTLC => {
1 + 1 + 73 + 1 + 1 + 1 + 139
},
// number_of_witness_elements + sig_length + revocation_sig + true_length + op_true + witness_script_length + witness_script
&InputDescriptors::RevokedOutput => {
1 + 1 + 73 + 1 + 1 + 1 + 77
},
};
}
tx_weight
}
/// In LN, output claimed are time-sensitive, which means we have to spend them before reaching some timelock expiration. At in-channel
/// output detection, we generate a first version of a claim tx and associate to it a height timer. A height timer is an absolute block
/// height than once reached we should generate a new bumped "version" of the claim tx to be sure than we safely claim outputs before
/// than our counterparty can do it too. If timelock expires soon, height timer is going to be scale down in consequence to increase
/// frequency of the bump and so increase our bets of success.
fn get_height_timer(current_height: u32, timelock_expiration: u32) -> u32 {
if timelock_expiration <= current_height + 3 {
return current_height + 1
} else if timelock_expiration - current_height <= 15 {
return current_height + 3
}
current_height + 15
}
/// Lightning security model (i.e being able to redeem/timeout HTLC or penalize coutnerparty onchain) lays on the assumption of claim transactions getting confirmed before timelock expiration
/// (CSV or CLTV following cases). In case of high-fee spikes, claim tx may stuck in the mempool, so you need to bump its feerate quickly using Replace-By-Fee or Child-Pay-For-Parent.
/// Panics if there are signing errors, because signing operations in reaction to on-chain events
/// are not expected to fail, and if they do, we may lose funds.
fn generate_claim_tx<F: Deref, L: Deref>(&mut self, height: u32, cached_claim_datas: &ClaimTxBumpMaterial, fee_estimator: &F, logger: &L) -> Option<(Option<u32>, u32, Transaction)>
where F::Target: FeeEstimator,
L::Target: Logger,
{
if cached_claim_datas.per_input_material.len() == 0 { return None } // But don't prune pending claiming request yet, we may have to resurrect HTLCs
let mut inputs = Vec::new();
for outp in cached_claim_datas.per_input_material.keys() {
log_trace!(logger, "Outpoint {}:{}", outp.txid, outp.vout);
inputs.push(TxIn {
previous_output: *outp,
script_sig: Script::new(),
sequence: 0xfffffffd,
witness: Vec::new(),
});
}
let mut bumped_tx = Transaction {
version: 2,
lock_time: 0,
input: inputs,
output: vec![TxOut {
script_pubkey: self.destination_script.clone(),
value: 0
}],
};
macro_rules! RBF_bump {
($amount: expr, $old_feerate: expr, $fee_estimator: expr, $predicted_weight: expr) => {
{
let mut used_feerate: u32;
// If old feerate inferior to actual one given back by Fee Estimator, use it to compute new fee...
let new_fee = if $old_feerate < $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::HighPriority) {
let mut value = $amount;
if subtract_high_prio_fee!(logger, $fee_estimator, value, $predicted_weight, used_feerate) {
// Overflow check is done in subtract_high_prio_fee
($amount - value)
} else {
log_trace!(logger, "Can't new-estimation bump new claiming tx, amount {} is too small", $amount);
return None;
}
// ...else just increase the previous feerate by 25% (because that's a nice number)
} else {
let fee = $old_feerate as u64 * ($predicted_weight as u64) / 750;
if $amount <= fee {
log_trace!(logger, "Can't 25% bump new claiming tx, amount {} is too small", $amount);
return None;
}
fee
};
let previous_fee = $old_feerate as u64 * ($predicted_weight as u64) / 1000;
let min_relay_fee = MIN_RELAY_FEE_SAT_PER_1000_WEIGHT * ($predicted_weight as u64) / 1000;
// BIP 125 Opt-in Full Replace-by-Fee Signaling
// * 3. The replacement transaction pays an absolute fee of at least the sum paid by the original transactions.
// * 4. The replacement transaction must also pay for its own bandwidth at or above the rate set by the node's minimum relay fee setting.
let new_fee = if new_fee < previous_fee + min_relay_fee {
new_fee + previous_fee + min_relay_fee - new_fee
} else {
new_fee
};
Some((new_fee, new_fee * 1000 / ($predicted_weight as u64)))
}
}
}
// Compute new height timer to decide when we need to regenerate a new bumped version of the claim tx (if we
// didn't receive confirmation of it before, or not enough reorg-safe depth on top of it).
let new_timer = Some(Self::get_height_timer(height, cached_claim_datas.soonest_timelock));
let mut inputs_witnesses_weight = 0;
let mut amt = 0;
let mut dynamic_fee = true;
for per_outp_material in cached_claim_datas.per_input_material.values() {
match per_outp_material {
&InputMaterial::Revoked { ref input_descriptor, ref amount, .. } => {
inputs_witnesses_weight += Self::get_witnesses_weight(&[*input_descriptor]);
amt += *amount;
},
&InputMaterial::CounterpartyHTLC { ref preimage, ref htlc, .. } => {
inputs_witnesses_weight += Self::get_witnesses_weight(if preimage.is_some() { &[InputDescriptors::OfferedHTLC] } else { &[InputDescriptors::ReceivedHTLC] });
amt += htlc.amount_msat / 1000;
},
&InputMaterial::HolderHTLC { .. } => {
dynamic_fee = false;
},
&InputMaterial::Funding { .. } => {
dynamic_fee = false;
}
}
}
if dynamic_fee {
let predicted_weight = (bumped_tx.get_weight() + inputs_witnesses_weight) as u64;
let mut new_feerate;
// If old feerate is 0, first iteration of this claim, use normal fee calculation
if cached_claim_datas.feerate_previous != 0 {
if let Some((new_fee, feerate)) = RBF_bump!(amt, cached_claim_datas.feerate_previous, fee_estimator, predicted_weight) {
// If new computed fee is superior at the whole claimable amount burn all in fees
if new_fee as u64 > amt {
bumped_tx.output[0].value = 0;
} else {
bumped_tx.output[0].value = amt - new_fee as u64;
}
new_feerate = feerate;
} else { return None; }
} else {
if subtract_high_prio_fee!(logger, fee_estimator, amt, predicted_weight, new_feerate) {
bumped_tx.output[0].value = amt;
} else { return None; }
}
assert!(new_feerate != 0);
for (i, (outp, per_outp_material)) in cached_claim_datas.per_input_material.iter().enumerate() {
match per_outp_material {
&InputMaterial::Revoked { ref per_commitment_point, ref counterparty_delayed_payment_base_key, ref counterparty_htlc_base_key, ref per_commitment_key, ref input_descriptor, ref amount, ref htlc, ref on_counterparty_tx_csv } => {
if let Ok(tx_keys) = TxCreationKeys::derive_new(&self.secp_ctx, &per_commitment_point, counterparty_delayed_payment_base_key, counterparty_htlc_base_key, &self.signer.pubkeys().revocation_basepoint, &self.signer.pubkeys().htlc_basepoint) {
let witness_script = if let Some(ref htlc) = *htlc {
chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &tx_keys.broadcaster_htlc_key, &tx_keys.countersignatory_htlc_key, &tx_keys.revocation_key)
} else {
chan_utils::get_revokeable_redeemscript(&tx_keys.revocation_key, *on_counterparty_tx_csv, &tx_keys.broadcaster_delayed_payment_key)
};
let sig = if let Some(ref htlc) = *htlc {
self.signer.sign_justice_revoked_htlc(&bumped_tx, i, *amount, &per_commitment_key, &htlc, &self.secp_ctx).expect("sign justice tx")
} else {
self.signer.sign_justice_revoked_output(&bumped_tx, i, *amount, &per_commitment_key, &self.secp_ctx).expect("sign justice tx")
};
bumped_tx.input[i].witness.push(sig.serialize_der().to_vec());
bumped_tx.input[i].witness[0].push(SigHashType::All as u8);
if htlc.is_some() {
bumped_tx.input[i].witness.push(tx_keys.revocation_key.clone().serialize().to_vec());
} else {
bumped_tx.input[i].witness.push(vec!(1));
}
bumped_tx.input[i].witness.push(witness_script.clone().into_bytes());
log_trace!(logger, "Going to broadcast Penalty Transaction {} claiming revoked {} output {} from {} with new feerate {}...", bumped_tx.txid(), if *input_descriptor == InputDescriptors::RevokedOutput { "to_holder" } else if *input_descriptor == InputDescriptors::RevokedOfferedHTLC { "offered" } else if *input_descriptor == InputDescriptors::RevokedReceivedHTLC { "received" } else { "" }, outp.vout, outp.txid, new_feerate);
}
},
&InputMaterial::CounterpartyHTLC { ref per_commitment_point, ref counterparty_delayed_payment_base_key, ref counterparty_htlc_base_key, ref preimage, ref htlc } => {
if let Ok(tx_keys) = TxCreationKeys::derive_new(&self.secp_ctx, &per_commitment_point, counterparty_delayed_payment_base_key, counterparty_htlc_base_key, &self.signer.pubkeys().revocation_basepoint, &self.signer.pubkeys().htlc_basepoint) {
let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &tx_keys.broadcaster_htlc_key, &tx_keys.countersignatory_htlc_key, &tx_keys.revocation_key);
if !preimage.is_some() { bumped_tx.lock_time = htlc.cltv_expiry }; // Right now we don't aggregate time-locked transaction, if we do we should set lock_time before to avoid breaking hash computation
let sig = self.signer.sign_counterparty_htlc_transaction(&bumped_tx, i, &htlc.amount_msat / 1000, &per_commitment_point, htlc, &self.secp_ctx).expect("sign counterparty HTLC tx");
bumped_tx.input[i].witness.push(sig.serialize_der().to_vec());
bumped_tx.input[i].witness[0].push(SigHashType::All as u8);
if let &Some(preimage) = preimage {
bumped_tx.input[i].witness.push(preimage.0.to_vec());
} else {
// Due to BIP146 (MINIMALIF) this must be a zero-length element to relay.
bumped_tx.input[i].witness.push(vec![]);
}
bumped_tx.input[i].witness.push(witness_script.clone().into_bytes());
log_trace!(logger, "Going to broadcast Claim Transaction {} claiming counterparty {} htlc output {} from {} with new feerate {}...", bumped_tx.txid(), if preimage.is_some() { "offered" } else { "received" }, outp.vout, outp.txid, new_feerate);
}
},
_ => unreachable!()
}
}
log_trace!(logger, "...with timer {}", new_timer.unwrap());
assert!(predicted_weight >= bumped_tx.get_weight() as u64);
return Some((new_timer, new_feerate as u32, bumped_tx))
} else {
for (_, (outp, per_outp_material)) in cached_claim_datas.per_input_material.iter().enumerate() {
match per_outp_material {
&InputMaterial::HolderHTLC { ref preimage, ref amount } => {
let htlc_tx = self.get_fully_signed_htlc_tx(outp, preimage);
if let Some(htlc_tx) = htlc_tx {
let feerate = (amount - htlc_tx.output[0].value) * 1000 / htlc_tx.get_weight() as u64;
// Timer set to $NEVER given we can't bump tx without anchor outputs
log_trace!(logger, "Going to broadcast Holder HTLC-{} claiming HTLC output {} from {}...", if preimage.is_some() { "Success" } else { "Timeout" }, outp.vout, outp.txid);
return Some((None, feerate as u32, htlc_tx));
}
return None;
},
&InputMaterial::Funding { ref funding_redeemscript } => {
let signed_tx = self.get_fully_signed_holder_tx(funding_redeemscript);
// Timer set to $NEVER given we can't bump tx without anchor outputs
log_trace!(logger, "Going to broadcast Holder Transaction {} claiming funding output {} from {}...", signed_tx.txid(), outp.vout, outp.txid);
return Some((None, self.holder_commitment.feerate_per_kw(), signed_tx));
}
_ => unreachable!()
}
}
}
None
}
/// Upon channelmonitor.block_connected(..) or upon provision of a preimage on the forward link
/// for this channel, provide new relevant on-chain transactions and/or new claim requests.
/// Formerly this was named `block_connected`, but it is now also used for claiming an HTLC output
/// if we receive a preimage after force-close.
pub(crate) fn update_claims_view<B: Deref, F: Deref, L: Deref>(&mut self, txn_matched: &[&Transaction], claimable_outpoints: Vec<ClaimRequest>, latest_height: Option<u32>, broadcaster: &B, fee_estimator: &F, logger: &L)
where B::Target: BroadcasterInterface,
F::Target: FeeEstimator,
L::Target: Logger,
{
let height = match latest_height {
Some(h) => h,
None => self.latest_height,
};
log_trace!(logger, "Updating claims view at height {} with {} matched transactions and {} claim requests", height, txn_matched.len(), claimable_outpoints.len());
let mut new_claims = Vec::new();
let mut aggregated_claim = HashMap::new();
let mut aggregated_soonest = ::std::u32::MAX;
// Try to aggregate outputs if their timelock expiration isn't imminent (absolute_timelock
// <= CLTV_SHARED_CLAIM_BUFFER) and they don't require an immediate nLockTime (aggregable).
for req in claimable_outpoints {
// Don't claim a outpoint twice that would be bad for privacy and may uselessly lock a CPFP input for a while
if let Some(_) = self.claimable_outpoints.get(&req.outpoint) { log_trace!(logger, "Bouncing off outpoint {}:{}, already registered its claiming request", req.outpoint.txid, req.outpoint.vout); } else {
log_trace!(logger, "Test if outpoint can be aggregated with expiration {} against {}", req.absolute_timelock, height + CLTV_SHARED_CLAIM_BUFFER);
if req.absolute_timelock <= height + CLTV_SHARED_CLAIM_BUFFER || !req.aggregable { // Don't aggregate if outpoint absolute timelock is soon or marked as non-aggregable
let mut single_input = HashMap::new();
single_input.insert(req.outpoint, req.witness_data);
new_claims.push((req.absolute_timelock, single_input));
} else {
aggregated_claim.insert(req.outpoint, req.witness_data);
if req.absolute_timelock < aggregated_soonest {
aggregated_soonest = req.absolute_timelock;
}
}
}
}
new_claims.push((aggregated_soonest, aggregated_claim));
// Generate claim transactions and track them to bump if necessary at
// height timer expiration (i.e in how many blocks we're going to take action).
for (soonest_timelock, claim) in new_claims.drain(..) {
let mut claim_material = ClaimTxBumpMaterial { height_timer: None, feerate_previous: 0, soonest_timelock, per_input_material: claim };
if let Some((new_timer, new_feerate, tx)) = self.generate_claim_tx(height, &claim_material, &*fee_estimator, &*logger) {
claim_material.height_timer = new_timer;
claim_material.feerate_previous = new_feerate;
let txid = tx.txid();
for k in claim_material.per_input_material.keys() {
log_trace!(logger, "Registering claiming request for {}:{}", k.txid, k.vout);
self.claimable_outpoints.insert(k.clone(), (txid, height));
}
self.pending_claim_requests.insert(txid, claim_material);
log_info!(logger, "Broadcasting onchain {}", log_tx!(tx));
broadcaster.broadcast_transaction(&tx);
}
}
let mut bump_candidates = HashMap::new();
for tx in txn_matched {
// Scan all input to verify is one of the outpoint spent is of interest for us
let mut claimed_outputs_material = Vec::new();
for inp in &tx.input {
if let Some(first_claim_txid_height) = self.claimable_outpoints.get(&inp.previous_output) {
// If outpoint has claim request pending on it...
if let Some(claim_material) = self.pending_claim_requests.get_mut(&first_claim_txid_height.0) {
//... we need to verify equality between transaction outpoints and claim request
// outpoints to know if transaction is the original claim or a bumped one issued
// by us.
let mut set_equality = true;
if claim_material.per_input_material.len() != tx.input.len() {
set_equality = false;
} else {
for (claim_inp, tx_inp) in claim_material.per_input_material.keys().zip(tx.input.iter()) {
if *claim_inp != tx_inp.previous_output {
set_equality = false;
}
}
}
macro_rules! clean_claim_request_after_safety_delay {
() => {
let entry = OnchainEventEntry {
txid: tx.txid(),
height,
event: OnchainEvent::Claim { claim_request: first_claim_txid_height.0.clone() }
};
if !self.onchain_events_awaiting_threshold_conf.contains(&entry) {
self.onchain_events_awaiting_threshold_conf.push(entry);
}
}
}
// If this is our transaction (or our counterparty spent all the outputs
// before we could anyway with same inputs order than us), wait for
// ANTI_REORG_DELAY and clean the RBF tracking map.
if set_equality {
clean_claim_request_after_safety_delay!();
} else { // If false, generate new claim request with update outpoint set
let mut at_least_one_drop = false;
for input in tx.input.iter() {
if let Some(input_material) = claim_material.per_input_material.remove(&input.previous_output) {
claimed_outputs_material.push((input.previous_output, input_material));
at_least_one_drop = true;
}
// If there are no outpoints left to claim in this request, drop it entirely after ANTI_REORG_DELAY.
if claim_material.per_input_material.is_empty() {
clean_claim_request_after_safety_delay!();
}
}
//TODO: recompute soonest_timelock to avoid wasting a bit on fees
if at_least_one_drop {
bump_candidates.insert(first_claim_txid_height.0.clone(), claim_material.clone());
}
}
break; //No need to iterate further, either tx is our or their
} else {
panic!("Inconsistencies between pending_claim_requests map and claimable_outpoints map");
}
}
}
for (outpoint, input_material) in claimed_outputs_material.drain(..) {
let entry = OnchainEventEntry {
txid: tx.txid(),
height,
event: OnchainEvent::ContentiousOutpoint { outpoint, input_material },
};
if !self.onchain_events_awaiting_threshold_conf.contains(&entry) {
self.onchain_events_awaiting_threshold_conf.push(entry);
}
}
}
// After security delay, either our claim tx got enough confs or outpoint is definetely out of reach
let onchain_events_awaiting_threshold_conf =
self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
for entry in onchain_events_awaiting_threshold_conf {
if entry.has_reached_confirmation_threshold(height) {
match entry.event {
OnchainEvent::Claim { claim_request } => {
// We may remove a whole set of claim outpoints here, as these one may have
// been aggregated in a single tx and claimed so atomically
if let Some(bump_material) = self.pending_claim_requests.remove(&claim_request) {
for outpoint in bump_material.per_input_material.keys() {
self.claimable_outpoints.remove(&outpoint);
}
}
},
OnchainEvent::ContentiousOutpoint { outpoint, .. } => {
self.claimable_outpoints.remove(&outpoint);
}
}
} else {
self.onchain_events_awaiting_threshold_conf.push(entry);
}
}
// Check if any pending claim request must be rescheduled
for (first_claim_txid, ref claim_data) in self.pending_claim_requests.iter() {
if let Some(height_timer) = claim_data.height_timer {
if height >= height_timer {
bump_candidates.insert(*first_claim_txid, (*claim_data).clone());
}
}
}
// Build, bump and rebroadcast tx accordingly
log_trace!(logger, "Bumping {} candidates", bump_candidates.len());
for (first_claim_txid, claim_material) in bump_candidates.iter() {
if let Some((new_timer, new_feerate, bump_tx)) = self.generate_claim_tx(height, &claim_material, &*fee_estimator, &*logger) {
log_info!(logger, "Broadcasting onchain {}", log_tx!(bump_tx));
broadcaster.broadcast_transaction(&bump_tx);
if let Some(claim_material) = self.pending_claim_requests.get_mut(first_claim_txid) {
claim_material.height_timer = new_timer;
claim_material.feerate_previous = new_feerate;
}
}
}
}
pub(crate) fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
&mut self,
txid: &Txid,
broadcaster: B,
fee_estimator: F,
logger: L,
) where
B::Target: BroadcasterInterface,
F::Target: FeeEstimator,
L::Target: Logger,
{
let mut height = None;
for entry in self.onchain_events_awaiting_threshold_conf.iter() {
if entry.txid == *txid {
height = Some(entry.height);
break;
}
}
if let Some(height) = height {
self.block_disconnected(height, broadcaster, fee_estimator, logger);
}
}
pub(crate) fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, height: u32, broadcaster: B, fee_estimator: F, logger: L)
where B::Target: BroadcasterInterface,
F::Target: FeeEstimator,
L::Target: Logger,
{
let mut bump_candidates = HashMap::new();
let onchain_events_awaiting_threshold_conf =
self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
for entry in onchain_events_awaiting_threshold_conf {
if entry.height >= height {
//- our claim tx on a commitment tx output
//- resurect outpoint back in its claimable set and regenerate tx
match entry.event {
OnchainEvent::ContentiousOutpoint { outpoint, input_material } => {
if let Some(ancestor_claimable_txid) = self.claimable_outpoints.get(&outpoint) {
if let Some(claim_material) = self.pending_claim_requests.get_mut(&ancestor_claimable_txid.0) {
claim_material.per_input_material.insert(outpoint, input_material);
// Using a HashMap guarantee us than if we have multiple outpoints getting
// resurrected only one bump claim tx is going to be broadcast
bump_candidates.insert(ancestor_claimable_txid.clone(), claim_material.clone());
}
}
},
_ => {},
}
} else {
self.onchain_events_awaiting_threshold_conf.push(entry);
}
}
for (_, claim_material) in bump_candidates.iter_mut() {
if let Some((new_timer, new_feerate, bump_tx)) = self.generate_claim_tx(height, &claim_material, &&*fee_estimator, &&*logger) {
claim_material.height_timer = new_timer;
claim_material.feerate_previous = new_feerate;
log_info!(logger, "Broadcasting onchain {}", log_tx!(bump_tx));
broadcaster.broadcast_transaction(&bump_tx);
}
}
for (ancestor_claim_txid, claim_material) in bump_candidates.drain() {
self.pending_claim_requests.insert(ancestor_claim_txid.0, claim_material);
}
//TODO: if we implement cross-block aggregated claim transaction we need to refresh set of outpoints and regenerate tx but
// right now if one of the outpoint get disconnected, just erase whole pending claim request.
let mut remove_request = Vec::new();
self.claimable_outpoints.retain(|_, ref v|
if v.1 >= height {
remove_request.push(v.0.clone());
false
} else { true });
for req in remove_request {
self.pending_claim_requests.remove(&req);
}
}
pub(crate) fn get_relevant_txids(&self) -> Vec<Txid> {
let mut txids: Vec<Txid> = self.onchain_events_awaiting_threshold_conf
.iter()
.map(|entry| entry.txid)
.collect();
txids.sort_unstable();
txids.dedup();
txids
}
pub(crate) fn provide_latest_holder_tx(&mut self, tx: HolderCommitmentTransaction) {
self.prev_holder_commitment = Some(replace(&mut self.holder_commitment, tx));
self.holder_htlc_sigs = None;
}
// Normally holder HTLCs are signed at the same time as the holder commitment tx. However,
// in some configurations, the holder commitment tx has been signed and broadcast by a
// ChannelMonitor replica, so we handle that case here.
fn sign_latest_holder_htlcs(&mut self) {
if self.holder_htlc_sigs.is_none() {
let (_sig, sigs) = self.signer.sign_holder_commitment_and_htlcs(&self.holder_commitment, &self.secp_ctx).expect("sign holder commitment");
self.holder_htlc_sigs = Some(Self::extract_holder_sigs(&self.holder_commitment, sigs));
}
}
// Normally only the latest commitment tx and HTLCs need to be signed. However, in some
// configurations we may have updated our holder commitment but a replica of the ChannelMonitor
// broadcast the previous one before we sync with it. We handle that case here.
fn sign_prev_holder_htlcs(&mut self) {
if self.prev_holder_htlc_sigs.is_none() {
if let Some(ref holder_commitment) = self.prev_holder_commitment {
let (_sig, sigs) = self.signer.sign_holder_commitment_and_htlcs(holder_commitment, &self.secp_ctx).expect("sign previous holder commitment");
self.prev_holder_htlc_sigs = Some(Self::extract_holder_sigs(holder_commitment, sigs));
}
}
}
fn extract_holder_sigs(holder_commitment: &HolderCommitmentTransaction, sigs: Vec<Signature>) -> Vec<Option<(usize, Signature)>> {
let mut ret = Vec::new();
for (htlc_idx, (holder_sig, htlc)) in sigs.iter().zip(holder_commitment.htlcs().iter()).enumerate() {
let tx_idx = htlc.transaction_output_index.unwrap();
if ret.len() <= tx_idx as usize { ret.resize(tx_idx as usize + 1, None); }
ret[tx_idx as usize] = Some((htlc_idx, holder_sig.clone()));
}
ret
}
//TODO: getting lastest holder transactions should be infallible and result in us "force-closing the channel", but we may
// have empty holder commitment transaction if a ChannelMonitor is asked to force-close just after Channel::get_outbound_funding_created,
// before providing a initial commitment transaction. For outbound channel, init ChannelMonitor at Channel::funding_signed, there is nothing
// to monitor before.
pub(crate) fn get_fully_signed_holder_tx(&mut self, funding_redeemscript: &Script) -> Transaction {
let (sig, htlc_sigs) = self.signer.sign_holder_commitment_and_htlcs(&self.holder_commitment, &self.secp_ctx).expect("signing holder commitment");
self.holder_htlc_sigs = Some(Self::extract_holder_sigs(&self.holder_commitment, htlc_sigs));
self.holder_commitment.add_holder_sig(funding_redeemscript, sig)
}
#[cfg(any(test, feature="unsafe_revoked_tx_signing"))]
pub(crate) fn get_fully_signed_copy_holder_tx(&mut self, funding_redeemscript: &Script) -> Transaction {
let (sig, htlc_sigs) = self.signer.unsafe_sign_holder_commitment_and_htlcs(&self.holder_commitment, &self.secp_ctx).expect("sign holder commitment");
self.holder_htlc_sigs = Some(Self::extract_holder_sigs(&self.holder_commitment, htlc_sigs));
self.holder_commitment.add_holder_sig(funding_redeemscript, sig)
}
pub(crate) fn get_fully_signed_htlc_tx(&mut self, outp: &::bitcoin::OutPoint, preimage: &Option<PaymentPreimage>) -> Option<Transaction> {
let mut htlc_tx = None;
let commitment_txid = self.holder_commitment.trust().txid();
// Check if the HTLC spends from the current holder commitment
if commitment_txid == outp.txid {
self.sign_latest_holder_htlcs();
if let &Some(ref htlc_sigs) = &self.holder_htlc_sigs {
let &(ref htlc_idx, ref htlc_sig) = htlc_sigs[outp.vout as usize].as_ref().unwrap();
let trusted_tx = self.holder_commitment.trust();
let counterparty_htlc_sig = self.holder_commitment.counterparty_htlc_sigs[*htlc_idx];
htlc_tx = Some(trusted_tx
.get_signed_htlc_tx(&self.channel_transaction_parameters.as_holder_broadcastable(), *htlc_idx, &counterparty_htlc_sig, htlc_sig, preimage));
}
}
// If the HTLC doesn't spend the current holder commitment, check if it spends the previous one
if htlc_tx.is_none() && self.prev_holder_commitment.is_some() {
let commitment_txid = self.prev_holder_commitment.as_ref().unwrap().trust().txid();
if commitment_txid == outp.txid {
self.sign_prev_holder_htlcs();
if let &Some(ref htlc_sigs) = &self.prev_holder_htlc_sigs {
let &(ref htlc_idx, ref htlc_sig) = htlc_sigs[outp.vout as usize].as_ref().unwrap();
let holder_commitment = self.prev_holder_commitment.as_ref().unwrap();
let trusted_tx = holder_commitment.trust();
let counterparty_htlc_sig = holder_commitment.counterparty_htlc_sigs[*htlc_idx];
htlc_tx = Some(trusted_tx
.get_signed_htlc_tx(&self.channel_transaction_parameters.as_holder_broadcastable(), *htlc_idx, &counterparty_htlc_sig, htlc_sig, preimage));
}
}
}
htlc_tx
}
#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
pub(crate) fn unsafe_get_fully_signed_htlc_tx(&mut self, outp: &::bitcoin::OutPoint, preimage: &Option<PaymentPreimage>) -> Option<Transaction> {
let latest_had_sigs = self.holder_htlc_sigs.is_some();
let prev_had_sigs = self.prev_holder_htlc_sigs.is_some();
let ret = self.get_fully_signed_htlc_tx(outp, preimage);
if !latest_had_sigs {
self.holder_htlc_sigs = None;
}
if !prev_had_sigs {
self.prev_holder_htlc_sigs = None;
}
ret
}
}