rust-lightning/lightning/src/ln/reorg_tests.rs

550 lines
27 KiB
Rust
Raw Normal View History

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Further functional tests which test blockchain reorganizations.
use chain::channelmonitor::{ANTI_REORG_DELAY, ChannelMonitor};
use chain::transaction::OutPoint;
use chain::{Confirm, Watch};
use ln::channelmanager::{ChannelManager, ChannelManagerReadArgs};
use ln::features::InitFeatures;
use ln::msgs::ChannelMessageHandler;
use util::enforcing_trait_impls::EnforcingSigner;
use util::events::{Event, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
use util::test_utils;
use util::ser::{ReadableArgs, Writeable};
use bitcoin::blockdata::block::{Block, BlockHeader};
use bitcoin::blockdata::script::Builder;
use bitcoin::blockdata::opcodes;
use bitcoin::hash_types::BlockHash;
use bitcoin::secp256k1::Secp256k1;
use prelude::*;
use core::mem;
use ln::functional_test_utils::*;
fn do_test_onchain_htlc_reorg(local_commitment: bool, claim: bool) {
// Our on-chain HTLC-claim learning has a few properties worth testing:
// * If an upstream HTLC is claimed with a preimage (both against our own commitment
// transaction our counterparty's), we claim it backwards immediately.
// * If an upstream HTLC is claimed with a timeout, we delay ANTI_REORG_DELAY before failing
// it backwards to ensure our counterparty can't claim with a preimage in a reorg.
//
// Here we test both properties in any combination based on the two bools passed in as
// arguments.
//
// If local_commitment is set, we first broadcast a local commitment containing an offered HTLC
// and an HTLC-Timeout tx, otherwise we broadcast a remote commitment containing a received
// HTLC and a local HTLC-Timeout tx spending it.
//
// We then either allow these transactions to confirm (if !claim) or we wait until one block
// before they otherwise would and reorg them out, confirming an HTLC-Success tx instead.
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known());
// Make sure all nodes are at the same starting height
connect_blocks(&nodes[0], 2*CHAN_CONFIRM_DEPTH + 1 - nodes[0].best_block_info().1);
connect_blocks(&nodes[1], 2*CHAN_CONFIRM_DEPTH + 1 - nodes[1].best_block_info().1);
connect_blocks(&nodes[2], 2*CHAN_CONFIRM_DEPTH + 1 - nodes[2].best_block_info().1);
let (our_payment_preimage, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1000000);
// Provide preimage to node 2 by claiming payment
nodes[2].node.claim_funds(our_payment_preimage);
check_added_monitors!(nodes[2], 1);
get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
let mut header = BlockHeader { version: 0x2000_0000, prev_blockhash: nodes[2].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
let claim_txn = if local_commitment {
// Broadcast node 1 commitment txn to broadcast the HTLC-Timeout
let node_1_commitment_txn = get_local_commitment_txn!(nodes[1], chan_2.2);
assert_eq!(node_1_commitment_txn.len(), 2); // 1 local commitment tx, 1 Outbound HTLC-Timeout
assert_eq!(node_1_commitment_txn[0].output.len(), 2); // to-self and Offered HTLC (to-remote/to-node-3 is dust)
check_spends!(node_1_commitment_txn[0], chan_2.3);
check_spends!(node_1_commitment_txn[1], node_1_commitment_txn[0]);
// Give node 2 node 1's transactions and get its response (claiming the HTLC instead).
connect_block(&nodes[2], &Block { header, txdata: node_1_commitment_txn.clone() });
check_added_monitors!(nodes[2], 1);
check_closed_broadcast!(nodes[2], true); // We should get a BroadcastChannelUpdate (and *only* a BroadcstChannelUpdate)
check_closed_event!(nodes[2], 1, ClosureReason::CommitmentTxConfirmed);
let node_2_commitment_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap();
assert_eq!(node_2_commitment_txn.len(), 3); // ChannelMonitor: 1 offered HTLC-Claim, ChannelManger: 1 local commitment tx, 1 Received HTLC-Claim
assert_eq!(node_2_commitment_txn[1].output.len(), 2); // to-remote and Received HTLC (to-self is dust)
check_spends!(node_2_commitment_txn[1], chan_2.3);
check_spends!(node_2_commitment_txn[2], node_2_commitment_txn[1]);
check_spends!(node_2_commitment_txn[0], node_1_commitment_txn[0]);
// Make sure node 1's height is the same as the !local_commitment case
connect_blocks(&nodes[1], 1);
// Confirm node 1's commitment txn (and HTLC-Timeout) on node 1
header.prev_blockhash = nodes[1].best_block_hash();
connect_block(&nodes[1], &Block { header, txdata: node_1_commitment_txn.clone() });
// ...but return node 1's commitment tx in case claim is set and we're preparing to reorg
vec![node_1_commitment_txn[0].clone(), node_2_commitment_txn[0].clone()]
} else {
// Broadcast node 2 commitment txn
let mut node_2_commitment_txn = get_local_commitment_txn!(nodes[2], chan_2.2);
assert_eq!(node_2_commitment_txn.len(), 2); // 1 local commitment tx, 1 Received HTLC-Claim
assert_eq!(node_2_commitment_txn[0].output.len(), 2); // to-remote and Received HTLC (to-self is dust)
check_spends!(node_2_commitment_txn[0], chan_2.3);
check_spends!(node_2_commitment_txn[1], node_2_commitment_txn[0]);
// Give node 1 node 2's commitment transaction and get its response (timing the HTLC out)
mine_transaction(&nodes[1], &node_2_commitment_txn[0]);
connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1); // Confirm blocks until the HTLC expires
let node_1_commitment_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone();
assert_eq!(node_1_commitment_txn.len(), 2); // ChannelMonitor: 1 offered HTLC-Timeout, ChannelManger: 1 local commitment tx
assert_eq!(node_1_commitment_txn[0].output.len(), 2); // to-local and Offered HTLC (to-remote is dust)
check_spends!(node_1_commitment_txn[0], chan_2.3);
check_spends!(node_1_commitment_txn[1], node_2_commitment_txn[0]);
// Confirm node 1's HTLC-Timeout on node 1
mine_transaction(&nodes[1], &node_1_commitment_txn[1]);
// ...but return node 2's commitment tx (and claim) in case claim is set and we're preparing to reorg
vec![node_2_commitment_txn.pop().unwrap()]
};
check_added_monitors!(nodes[1], 1);
check_closed_broadcast!(nodes[1], true); // We should get a BroadcastChannelUpdate (and *only* a BroadcstChannelUpdate)
check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
// Connect ANTI_REORG_DELAY - 2 blocks, giving us a confirmation count of ANTI_REORG_DELAY - 1.
connect_blocks(&nodes[1], ANTI_REORG_DELAY - 2);
check_added_monitors!(nodes[1], 0);
assert_eq!(nodes[1].node.get_and_clear_pending_events().len(), 0);
if claim {
disconnect_blocks(&nodes[1], ANTI_REORG_DELAY - 2);
let block = Block {
header: BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
txdata: claim_txn,
};
connect_block(&nodes[1], &block);
// ChannelManager only polls chain::Watch::release_pending_monitor_events when we
// probe it for events, so we probe non-message events here (which should just be the
// PaymentForwarded event).
expect_payment_forwarded!(nodes[1], nodes[0], Some(1000), true);
} else {
// Confirm the timeout tx and check that we fail the HTLC backwards
let block = Block {
header: BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
txdata: vec![],
};
connect_block(&nodes[1], &block);
expect_pending_htlcs_forwardable!(nodes[1]);
}
check_added_monitors!(nodes[1], 1);
// Which should result in an immediate claim/fail of the HTLC:
let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
if claim {
assert_eq!(htlc_updates.update_fulfill_htlcs.len(), 1);
nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fulfill_htlcs[0]);
} else {
assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
}
commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false, true);
if claim {
expect_payment_sent!(nodes[0], our_payment_preimage);
} else {
expect_payment_failed_with_update!(nodes[0], our_payment_hash, false, chan_2.0.contents.short_channel_id, true);
}
}
#[test]
fn test_onchain_htlc_claim_reorg_local_commitment() {
do_test_onchain_htlc_reorg(true, true);
}
#[test]
fn test_onchain_htlc_timeout_delay_local_commitment() {
do_test_onchain_htlc_reorg(true, false);
}
#[test]
fn test_onchain_htlc_claim_reorg_remote_commitment() {
do_test_onchain_htlc_reorg(false, true);
}
#[test]
fn test_onchain_htlc_timeout_delay_remote_commitment() {
do_test_onchain_htlc_reorg(false, false);
}
2021-03-22 18:07:13 -04:00
fn do_test_unconf_chan(reload_node: bool, reorg_after_reload: bool, use_funding_unconfirmed: bool, connect_style: ConnectStyle) {
// After creating a chan between nodes, we disconnect all blocks previously seen to force a
// channel close on nodes[0] side. We also use this to provide very basic testing of logic
// around freeing background events which store monitor updates during block_[dis]connected.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
*nodes[0].connect_style.borrow_mut() = connect_style;
2021-03-22 18:07:13 -04:00
let chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
let channel_state = nodes[0].node.channel_state.lock().unwrap();
assert_eq!(channel_state.by_id.len(), 1);
assert_eq!(channel_state.short_to_id.len(), 2);
mem::drop(channel_state);
if !reorg_after_reload {
2021-03-22 18:07:13 -04:00
if use_funding_unconfirmed {
let relevant_txids = nodes[0].node.get_relevant_txids();
assert_eq!(&relevant_txids[..], &[chan.3.txid()]);
nodes[0].node.transaction_unconfirmed(&relevant_txids[0]);
} else {
disconnect_all_blocks(&nodes[0]);
}
if connect_style == ConnectStyle::FullBlockViaListen && !use_funding_unconfirmed {
handle_announce_close_broadcast_events(&nodes, 0, 1, true, "Channel closed because of an exception: Funding transaction was un-confirmed. Locked at 6 confs, now have 2 confs.");
2021-03-22 18:07:13 -04:00
} else {
handle_announce_close_broadcast_events(&nodes, 0, 1, true, "Channel closed because of an exception: Funding transaction was un-confirmed. Locked at 6 confs, now have 0 confs.");
2021-03-22 18:07:13 -04:00
}
check_added_monitors!(nodes[1], 1);
{
let channel_state = nodes[0].node.channel_state.lock().unwrap();
assert_eq!(channel_state.by_id.len(), 0);
assert_eq!(channel_state.short_to_id.len(), 0);
}
}
if reload_node {
// Since we currently have a background event pending, it's good to test that we survive a
// serialization roundtrip. Further, this tests the somewhat awkward edge-case of dropping
// the Channel object from the ChannelManager, but still having a monitor event pending for
// it when we go to deserialize, and then use the ChannelManager.
let nodes_0_serialized = nodes[0].node.encode();
let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
get_monitor!(nodes[0], chan.2).write(&mut chan_0_monitor_serialized).unwrap();
persister = test_utils::TestPersister::new();
let keys_manager = &chanmon_cfgs[0].keys_manager;
new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
nodes[0].chain_monitor = &new_chain_monitor;
let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
&mut chan_0_monitor_read, keys_manager).unwrap();
assert!(chan_0_monitor_read.is_empty());
let mut nodes_0_read = &nodes_0_serialized[..];
nodes_0_deserialized = {
let mut channel_monitors = HashMap::new();
channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
<(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster,
&test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(
&mut nodes_0_read, ChannelManagerReadArgs {
default_config: *nodes[0].node.get_current_default_configuration(),
keys_manager,
fee_estimator: node_cfgs[0].fee_estimator,
chain_monitor: nodes[0].chain_monitor,
tx_broadcaster: nodes[0].tx_broadcaster.clone(),
logger: nodes[0].logger,
channel_monitors,
}).unwrap().1
};
nodes[0].node = &nodes_0_deserialized;
assert!(nodes_0_read.is_empty());
2021-03-22 18:07:13 -04:00
if !reorg_after_reload {
// If the channel is already closed when we reload the node, we'll broadcast a closing
// transaction via the ChannelMonitor which is missing a corresponding channel.
assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1);
nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
}
nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0.clone(), chan_0_monitor).unwrap();
check_added_monitors!(nodes[0], 1);
}
if reorg_after_reload {
2021-03-22 18:07:13 -04:00
if use_funding_unconfirmed {
let relevant_txids = nodes[0].node.get_relevant_txids();
assert_eq!(&relevant_txids[..], &[chan.3.txid()]);
nodes[0].node.transaction_unconfirmed(&relevant_txids[0]);
} else {
disconnect_all_blocks(&nodes[0]);
}
if connect_style == ConnectStyle::FullBlockViaListen && !use_funding_unconfirmed {
handle_announce_close_broadcast_events(&nodes, 0, 1, true, "Channel closed because of an exception: Funding transaction was un-confirmed. Locked at 6 confs, now have 2 confs.");
2021-03-22 18:07:13 -04:00
} else {
handle_announce_close_broadcast_events(&nodes, 0, 1, true, "Channel closed because of an exception: Funding transaction was un-confirmed. Locked at 6 confs, now have 0 confs.");
2021-03-22 18:07:13 -04:00
}
check_added_monitors!(nodes[1], 1);
{
let channel_state = nodes[0].node.channel_state.lock().unwrap();
assert_eq!(channel_state.by_id.len(), 0);
assert_eq!(channel_state.short_to_id.len(), 0);
}
}
// With expect_channel_force_closed set the TestChainMonitor will enforce that the next update
// is a ChannelForcClosed on the right channel with should_broadcast set.
2021-03-22 18:07:13 -04:00
*nodes[0].chain_monitor.expect_channel_force_closed.lock().unwrap() = Some((chan.2, true));
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
nodes[0].node.test_process_background_events(); // Required to free the pending background monitor update
check_added_monitors!(nodes[0], 1);
let expected_err = if connect_style == ConnectStyle::FullBlockViaListen && !use_funding_unconfirmed {
"Funding transaction was un-confirmed. Locked at 6 confs, now have 2 confs."
} else {
"Funding transaction was un-confirmed. Locked at 6 confs, now have 0 confs."
};
check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Channel closed because of an exception: ".to_owned() + expected_err });
check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: expected_err.to_owned() });
2021-03-22 18:07:13 -04:00
assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1);
nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
// Now check that we can create a new channel
create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
send_payment(&nodes[0], &[&nodes[1]], 8000000);
}
#[test]
fn test_unconf_chan() {
2021-03-22 18:07:13 -04:00
do_test_unconf_chan(true, true, false, ConnectStyle::BestBlockFirstSkippingBlocks);
do_test_unconf_chan(false, true, false, ConnectStyle::BestBlockFirstSkippingBlocks);
do_test_unconf_chan(true, false, false, ConnectStyle::BestBlockFirstSkippingBlocks);
do_test_unconf_chan(false, false, false, ConnectStyle::BestBlockFirstSkippingBlocks);
}
#[test]
fn test_unconf_chan_via_listen() {
2021-03-22 18:07:13 -04:00
do_test_unconf_chan(true, true, false, ConnectStyle::FullBlockViaListen);
do_test_unconf_chan(false, true, false, ConnectStyle::FullBlockViaListen);
do_test_unconf_chan(true, false, false, ConnectStyle::FullBlockViaListen);
do_test_unconf_chan(false, false, false, ConnectStyle::FullBlockViaListen);
}
#[test]
fn test_unconf_chan_via_funding_unconfirmed() {
do_test_unconf_chan(true, true, true, ConnectStyle::BestBlockFirstSkippingBlocks);
do_test_unconf_chan(false, true, true, ConnectStyle::BestBlockFirstSkippingBlocks);
do_test_unconf_chan(true, false, true, ConnectStyle::BestBlockFirstSkippingBlocks);
do_test_unconf_chan(false, false, true, ConnectStyle::BestBlockFirstSkippingBlocks);
do_test_unconf_chan(true, true, true, ConnectStyle::FullBlockViaListen);
do_test_unconf_chan(false, true, true, ConnectStyle::FullBlockViaListen);
do_test_unconf_chan(true, false, true, ConnectStyle::FullBlockViaListen);
do_test_unconf_chan(false, false, true, ConnectStyle::FullBlockViaListen);
}
#[test]
fn test_set_outpoints_partial_claiming() {
// - remote party claim tx, new bump tx
// - disconnect remote claiming tx, new bump
// - disconnect tx, see no tx anymore
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 59000000, InitFeatures::known(), InitFeatures::known());
let payment_preimage_1 = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3_000_000).0;
let payment_preimage_2 = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3_000_000).0;
// Remote commitment txn with 4 outputs: to_local, to_remote, 2 outgoing HTLC
let remote_txn = get_local_commitment_txn!(nodes[1], chan.2);
assert_eq!(remote_txn.len(), 3);
assert_eq!(remote_txn[0].output.len(), 4);
assert_eq!(remote_txn[0].input.len(), 1);
assert_eq!(remote_txn[0].input[0].previous_output.txid, chan.3.txid());
check_spends!(remote_txn[1], remote_txn[0]);
check_spends!(remote_txn[2], remote_txn[0]);
// Connect blocks on node A to advance height towards TEST_FINAL_CLTV
// Provide node A with both preimage
nodes[0].node.claim_funds(payment_preimage_1);
nodes[0].node.claim_funds(payment_preimage_2);
check_added_monitors!(nodes[0], 2);
nodes[0].node.get_and_clear_pending_events();
nodes[0].node.get_and_clear_pending_msg_events();
// Connect blocks on node A commitment transaction
mine_transaction(&nodes[0], &remote_txn[0]);
check_closed_broadcast!(nodes[0], true);
check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed);
check_added_monitors!(nodes[0], 1);
// Verify node A broadcast tx claiming both HTLCs
{
let mut node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
// ChannelMonitor: claim tx, ChannelManager: local commitment tx + HTLC-Success*2
assert_eq!(node_txn.len(), 4);
check_spends!(node_txn[0], remote_txn[0]);
check_spends!(node_txn[1], chan.3);
check_spends!(node_txn[2], node_txn[1]);
check_spends!(node_txn[3], node_txn[1]);
assert_eq!(node_txn[0].input.len(), 2);
node_txn.clear();
}
// Connect blocks on node B
connect_blocks(&nodes[1], 135);
check_closed_broadcast!(nodes[1], true);
check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
check_added_monitors!(nodes[1], 1);
// Verify node B broadcast 2 HTLC-timeout txn
let partial_claim_tx = {
let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap();
assert_eq!(node_txn.len(), 3);
check_spends!(node_txn[1], node_txn[0]);
check_spends!(node_txn[2], node_txn[0]);
assert_eq!(node_txn[1].input.len(), 1);
assert_eq!(node_txn[2].input.len(), 1);
node_txn[1].clone()
};
// Broadcast partial claim on node A, should regenerate a claiming tx with HTLC dropped
mine_transaction(&nodes[0], &partial_claim_tx);
{
let mut node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
assert_eq!(node_txn.len(), 1);
check_spends!(node_txn[0], remote_txn[0]);
assert_eq!(node_txn[0].input.len(), 1); //dropped HTLC
node_txn.clear();
}
nodes[0].node.get_and_clear_pending_msg_events();
// Disconnect last block on node A, should regenerate a claiming tx with HTLC dropped
disconnect_blocks(&nodes[0], 1);
{
let mut node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
assert_eq!(node_txn.len(), 1);
check_spends!(node_txn[0], remote_txn[0]);
assert_eq!(node_txn[0].input.len(), 2); //resurrected HTLC
node_txn.clear();
}
//// Disconnect one more block and then reconnect multiple no transaction should be generated
disconnect_blocks(&nodes[0], 1);
connect_blocks(&nodes[0], 15);
{
let mut node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
assert_eq!(node_txn.len(), 0);
node_txn.clear();
}
}
fn do_test_to_remote_after_local_detection(style: ConnectStyle) {
// In previous code, detection of to_remote outputs in a counterparty commitment transaction
// was dependent on whether a local commitment transaction had been seen on-chain previously.
// This resulted in some edge cases around not being able to generate a SpendableOutput event
// after a reorg.
//
// Here, we test this by first confirming one set of commitment transactions, then
// disconnecting them and reconnecting another. We then confirm them and check that the correct
// SpendableOutput event is generated.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
*nodes[0].connect_style.borrow_mut() = style;
*nodes[1].connect_style.borrow_mut() = style;
let (_, _, chan_id, funding_tx) =
create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 100_000_000, InitFeatures::known(), InitFeatures::known());
let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 };
assert_eq!(funding_outpoint.to_channel_id(), chan_id);
let remote_txn_a = get_local_commitment_txn!(nodes[0], chan_id);
let remote_txn_b = get_local_commitment_txn!(nodes[1], chan_id);
mine_transaction(&nodes[0], &remote_txn_a[0]);
mine_transaction(&nodes[1], &remote_txn_a[0]);
assert!(nodes[0].node.list_channels().is_empty());
check_closed_broadcast!(nodes[0], true);
check_added_monitors!(nodes[0], 1);
check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed);
assert!(nodes[1].node.list_channels().is_empty());
check_closed_broadcast!(nodes[1], true);
check_added_monitors!(nodes[1], 1);
check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
// Drop transactions broadcasted in response to the first commitment transaction (we have good
// test coverage of these things already elsewhere).
assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
disconnect_blocks(&nodes[0], 1);
disconnect_blocks(&nodes[1], 1);
assert!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
assert!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
assert!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
assert!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
mine_transaction(&nodes[0], &remote_txn_b[0]);
mine_transaction(&nodes[1], &remote_txn_b[0]);
assert!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
assert!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
let mut node_a_spendable = nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events();
assert_eq!(node_a_spendable.len(), 1);
if let Event::SpendableOutputs { outputs } = node_a_spendable.pop().unwrap() {
assert_eq!(outputs.len(), 1);
let spend_tx = nodes[0].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(),
Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap();
check_spends!(spend_tx, remote_txn_b[0]);
}
// nodes[1] is waiting for the to_self_delay to expire, which is many more than
// ANTI_REORG_DELAY. Instead, walk it back and confirm the original remote_txn_a commitment
// again and check that nodes[1] generates a similar spendable output.
// Technically a reorg of ANTI_REORG_DELAY violates our assumptions, so this is undefined by
// our API spec, but we currently handle this correctly and there's little reason we shouldn't
// in the future.
assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty());
disconnect_blocks(&nodes[1], ANTI_REORG_DELAY);
mine_transaction(&nodes[1], &remote_txn_a[0]);
connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
let mut node_b_spendable = nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events();
assert_eq!(node_b_spendable.len(), 1);
if let Event::SpendableOutputs { outputs } = node_b_spendable.pop().unwrap() {
assert_eq!(outputs.len(), 1);
let spend_tx = nodes[1].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(),
Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap();
check_spends!(spend_tx, remote_txn_a[0]);
}
}
#[test]
fn test_to_remote_after_local_detection() {
do_test_to_remote_after_local_detection(ConnectStyle::BestBlockFirst);
do_test_to_remote_after_local_detection(ConnectStyle::BestBlockFirstSkippingBlocks);
do_test_to_remote_after_local_detection(ConnectStyle::TransactionsFirst);
do_test_to_remote_after_local_detection(ConnectStyle::TransactionsFirstSkippingBlocks);
do_test_to_remote_after_local_detection(ConnectStyle::FullBlockViaListen);
}