rust-lightning/lightning/src/ln/onion_route_tests.rs

1334 lines
66 KiB
Rust
Raw Normal View History

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Tests of the onion error messages/codes which are returned when routing a payment fails.
//! These tests work by standing up full nodes and route payments across the network, checking the
//! returned errors decode to the correct thing.
use crate::chain::channelmonitor::{CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS};
2022-12-20 14:46:08 -08:00
use crate::chain::keysinterface::{EntropySource, NodeSigner, Recipient};
use crate::ln::{PaymentHash, PaymentSecret};
use crate::ln::channel::EXPIRE_PREV_CONFIG_TICKS;
use crate::ln::channelmanager::{HTLCForwardInfo, CLTV_FAR_FAR_AWAY, MIN_CLTV_EXPIRY_DELTA, PendingAddHTLCInfo, PendingHTLCInfo, PendingHTLCRouting, PaymentId};
use crate::ln::onion_utils;
use crate::routing::gossip::{NetworkUpdate, RoutingFees};
use crate::routing::router::{get_route, PaymentParameters, Route, RouteHint, RouteHintHop};
use crate::ln::features::{InitFeatures, InvoiceFeatures};
use crate::ln::msgs;
use crate::ln::msgs::{ChannelMessageHandler, ChannelUpdate};
use crate::ln::wire::Encode;
use crate::util::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
use crate::util::ser::{Writeable, Writer};
use crate::util::test_utils;
use crate::util::config::{UserConfig, ChannelConfig};
use crate::util::errors::APIError;
use bitcoin::hash_types::BlockHash;
use bitcoin::hashes::Hash;
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::secp256k1;
use bitcoin::secp256k1::Secp256k1;
2022-05-05 17:59:38 +02:00
use bitcoin::secp256k1::{PublicKey, SecretKey};
use crate::io;
use crate::prelude::*;
use core::default::Default;
use crate::ln::functional_test_utils::*;
fn run_onion_failure_test<F1,F2>(_name: &str, test_case: u8, nodes: &Vec<Node>, route: &Route, payment_hash: &PaymentHash, payment_secret: &PaymentSecret, callback_msg: F1, callback_node: F2, expected_retryable: bool, expected_error_code: Option<u16>, expected_channel_update: Option<NetworkUpdate>, expected_short_channel_id: Option<u64>)
where F1: for <'a> FnMut(&'a mut msgs::UpdateAddHTLC),
F2: FnMut(),
{
run_onion_failure_test_with_fail_intercept(_name, test_case, nodes, route, payment_hash, payment_secret, callback_msg, |_|{}, callback_node, expected_retryable, expected_error_code, expected_channel_update, expected_short_channel_id);
}
// test_case
// 0: node1 fails backward
// 1: final node fails backward
// 2: payment completed but the user rejects the payment
// 3: final node fails backward (but tamper onion payloads from node0)
// 100: trigger error in the intermediate node and tamper returning fail_htlc
// 200: trigger error in the final node and tamper returning fail_htlc
fn run_onion_failure_test_with_fail_intercept<F1,F2,F3>(_name: &str, test_case: u8, nodes: &Vec<Node>, route: &Route, payment_hash: &PaymentHash, payment_secret: &PaymentSecret, mut callback_msg: F1, mut callback_fail: F2, mut callback_node: F3, expected_retryable: bool, expected_error_code: Option<u16>, expected_channel_update: Option<NetworkUpdate>, expected_short_channel_id: Option<u64>)
where F1: for <'a> FnMut(&'a mut msgs::UpdateAddHTLC),
F2: for <'a> FnMut(&'a mut msgs::UpdateFailHTLC),
F3: FnMut(),
{
macro_rules! expect_event {
($node: expr, $event_type: path) => {{
let events = $node.node.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
match events[0] {
$event_type { .. } => {},
_ => panic!("Unexpected event"),
}
}}
}
macro_rules! expect_htlc_forward {
($node: expr) => {{
expect_event!($node, Event::PendingHTLCsForwardable);
$node.node.process_pending_htlc_forwards();
}}
}
// 0 ~~> 2 send payment
Allow users to specify the `PaymentId` for new outbound payments In c986e52ce83e9aeaa9447abebc5f6600470337cf, an `MppId` was added to `HTLCSource` objects as a way of correlating HTLCs which belong to the same payment when the `ChannelManager` sees an HTLC succeed/fail. This allows it to have awareness of the state of all HTLCs in a payment when it generates the ultimate user-facing payment success/failure events. This was used in the same PR to avoid generating duplicative success/failure events for a single payment. Because the field was only used as an internal token to correlate HTLCs, and retries were not supported, it was generated randomly by calling the `KeysInterface`'s 32-byte random-fetching function. This also provided a backwards-compatibility story as the existing HTLC randomization key was re-used for older clients. In 28eea12bbe0d78d256f79ec725cf02366dce4e36 `MppId` was renamed to the current `PaymentId` which was then used expose the `retry_payment` interface, allowing users to send new HTLCs which are considered a part of an existing payment. At no point has the payment-sending API seriously considered idempotency, a major drawback which leaves the API unsafe in most deployments. Luckily, there is a simple solution - because the `PaymentId` must be unique, and because payment information for a given payment is held for several blocks after a payment completes/fails, it represents an obvious idempotency token. Here we simply require the user provide the `PaymentId` directly in `send_payment`, allowing them to use whatever token they may already have for a payment's idempotency token.
2022-10-06 21:31:02 +00:00
let payment_id = PaymentId(nodes[0].keys_manager.backing.get_secure_random_bytes());
nodes[0].node.send_payment(&route, *payment_hash, &Some(*payment_secret), payment_id).unwrap();
check_added_monitors!(nodes[0], 1);
let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
// temper update_add (0 => 1)
let mut update_add_0 = update_0.update_add_htlcs[0].clone();
if test_case == 0 || test_case == 3 || test_case == 100 {
callback_msg(&mut update_add_0);
callback_node();
}
// 0 => 1 update_add & CS
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add_0);
commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
let update_1_0 = match test_case {
0|100 => { // intermediate node failure; fail backward to 0
let update_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
assert!(update_1_0.update_fail_htlcs.len()+update_1_0.update_fail_malformed_htlcs.len()==1 && (update_1_0.update_fail_htlcs.len()==1 || update_1_0.update_fail_malformed_htlcs.len()==1));
update_1_0
},
1|2|3|200 => { // final node failure; forwarding to 2
assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
// forwarding on 1
if test_case != 200 {
callback_node();
}
expect_htlc_forward!(&nodes[1]);
let update_1 = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
check_added_monitors!(&nodes[1], 1);
assert_eq!(update_1.update_add_htlcs.len(), 1);
// tamper update_add (1 => 2)
let mut update_add_1 = update_1.update_add_htlcs[0].clone();
if test_case != 3 && test_case != 200 {
callback_msg(&mut update_add_1);
}
// 1 => 2
nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &update_add_1);
commitment_signed_dance!(nodes[2], nodes[1], update_1.commitment_signed, false, true);
if test_case == 2 || test_case == 200 {
expect_htlc_forward!(&nodes[2]);
expect_event!(&nodes[2], Event::PaymentClaimable);
callback_node();
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], vec![HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }]);
}
let update_2_1 = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
if test_case == 2 || test_case == 200 {
check_added_monitors!(&nodes[2], 1);
}
assert!(update_2_1.update_fail_htlcs.len() == 1);
let mut fail_msg = update_2_1.update_fail_htlcs[0].clone();
if test_case == 200 {
callback_fail(&mut fail_msg);
}
// 2 => 1
nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &fail_msg);
commitment_signed_dance!(nodes[1], nodes[2], update_2_1.commitment_signed, true);
// backward fail on 1
let update_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
assert!(update_1_0.update_fail_htlcs.len() == 1);
update_1_0
},
_ => unreachable!(),
};
// 1 => 0 commitment_signed_dance
if update_1_0.update_fail_htlcs.len() > 0 {
let mut fail_msg = update_1_0.update_fail_htlcs[0].clone();
if test_case == 100 {
callback_fail(&mut fail_msg);
}
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
} else {
nodes[0].node.handle_update_fail_malformed_htlc(&nodes[1].node.get_our_node_id(), &update_1_0.update_fail_malformed_htlcs[0]);
};
commitment_signed_dance!(nodes[0], nodes[1], update_1_0.commitment_signed, false, true);
let events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
if let &Event::PaymentPathFailed { ref payment_failed_permanently, ref network_update, ref all_paths_failed, ref short_channel_id, ref error_code, .. } = &events[0] {
assert_eq!(*payment_failed_permanently, !expected_retryable);
assert_eq!(*all_paths_failed, true);
assert_eq!(*error_code, expected_error_code);
if expected_channel_update.is_some() {
match network_update {
Some(update) => match update {
&NetworkUpdate::ChannelUpdateMessage { .. } => {
if let NetworkUpdate::ChannelUpdateMessage { .. } = expected_channel_update.unwrap() {} else {
panic!("channel_update not found!");
}
},
&NetworkUpdate::ChannelFailure { ref short_channel_id, ref is_permanent } => {
if let NetworkUpdate::ChannelFailure { short_channel_id: ref expected_short_channel_id, is_permanent: ref expected_is_permanent } = expected_channel_update.unwrap() {
assert!(*short_channel_id == *expected_short_channel_id);
assert!(*is_permanent == *expected_is_permanent);
} else {
panic!("Unexpected message event");
}
},
&NetworkUpdate::NodeFailure { ref node_id, ref is_permanent } => {
if let NetworkUpdate::NodeFailure { node_id: ref expected_node_id, is_permanent: ref expected_is_permanent } = expected_channel_update.unwrap() {
assert!(*node_id == *expected_node_id);
assert!(*is_permanent == *expected_is_permanent);
} else {
panic!("Unexpected message event");
}
},
}
None => panic!("Expected channel update"),
}
} else {
assert!(network_update.is_none());
}
if let Some(expected_short_channel_id) = expected_short_channel_id {
match short_channel_id {
Some(short_channel_id) => assert_eq!(*short_channel_id, expected_short_channel_id),
None => panic!("Expected short channel id"),
}
} else {
assert!(short_channel_id.is_none());
}
} else {
panic!("Unexpected event");
}
Allow users to specify the `PaymentId` for new outbound payments In c986e52ce83e9aeaa9447abebc5f6600470337cf, an `MppId` was added to `HTLCSource` objects as a way of correlating HTLCs which belong to the same payment when the `ChannelManager` sees an HTLC succeed/fail. This allows it to have awareness of the state of all HTLCs in a payment when it generates the ultimate user-facing payment success/failure events. This was used in the same PR to avoid generating duplicative success/failure events for a single payment. Because the field was only used as an internal token to correlate HTLCs, and retries were not supported, it was generated randomly by calling the `KeysInterface`'s 32-byte random-fetching function. This also provided a backwards-compatibility story as the existing HTLC randomization key was re-used for older clients. In 28eea12bbe0d78d256f79ec725cf02366dce4e36 `MppId` was renamed to the current `PaymentId` which was then used expose the `retry_payment` interface, allowing users to send new HTLCs which are considered a part of an existing payment. At no point has the payment-sending API seriously considered idempotency, a major drawback which leaves the API unsafe in most deployments. Luckily, there is a simple solution - because the `PaymentId` must be unique, and because payment information for a given payment is held for several blocks after a payment completes/fails, it represents an obvious idempotency token. Here we simply require the user provide the `PaymentId` directly in `send_payment`, allowing them to use whatever token they may already have for a payment's idempotency token.
2022-10-06 21:31:02 +00:00
nodes[0].node.abandon_payment(payment_id);
let events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
match events[0] {
Event::PaymentFailed { payment_hash: ev_payment_hash, payment_id: ev_payment_id } => {
assert_eq!(*payment_hash, ev_payment_hash);
assert_eq!(payment_id, ev_payment_id);
}
_ => panic!("Unexpected second event"),
}
}
impl msgs::ChannelUpdate {
fn dummy(short_channel_id: u64) -> msgs::ChannelUpdate {
use bitcoin::secp256k1::ffi::Signature as FFISignature;
2022-05-05 17:59:38 +02:00
use bitcoin::secp256k1::ecdsa::Signature;
msgs::ChannelUpdate {
2021-01-14 20:57:56 -05:00
signature: Signature::from(unsafe { FFISignature::new() }),
contents: msgs::UnsignedChannelUpdate {
chain_hash: BlockHash::hash(&vec![0u8][..]),
short_channel_id,
timestamp: 0,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: msgs::MAX_VALUE_MSAT,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: vec![],
}
}
}
}
struct BogusOnionHopData {
data: Vec<u8>
}
impl BogusOnionHopData {
fn new(orig: msgs::OnionHopData) -> Self {
Self { data: orig.encode() }
}
}
impl Writeable for BogusOnionHopData {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
writer.write_all(&self.data[..])
}
}
const BADONION: u16 = 0x8000;
const PERM: u16 = 0x4000;
const NODE: u16 = 0x2000;
const UPDATE: u16 = 0x1000;
#[test]
fn test_fee_failures() {
// Tests that the fee required when forwarding remains consistent over time. This was
// previously broken, with forwarding fees floating based on the fee estimator at the time of
// forwarding.
//
// When this test was written, the default base fee floated based on the HTLC count.
// It is now fixed, so we simply set the fee to the expected value here.
let mut config = test_default_channel_config();
config.channel_config.forwarding_fee_base_msat = 196;
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[Some(config), Some(config), Some(config)]);
let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
let channels = [create_announced_chan_between_nodes(&nodes, 0, 1), create_announced_chan_between_nodes(&nodes, 1, 2)];
// positive case
let (route, payment_hash_success, payment_preimage_success, payment_secret_success) = get_route_and_payment_hash!(nodes[0], nodes[2], 40_000);
Allow users to specify the `PaymentId` for new outbound payments In c986e52ce83e9aeaa9447abebc5f6600470337cf, an `MppId` was added to `HTLCSource` objects as a way of correlating HTLCs which belong to the same payment when the `ChannelManager` sees an HTLC succeed/fail. This allows it to have awareness of the state of all HTLCs in a payment when it generates the ultimate user-facing payment success/failure events. This was used in the same PR to avoid generating duplicative success/failure events for a single payment. Because the field was only used as an internal token to correlate HTLCs, and retries were not supported, it was generated randomly by calling the `KeysInterface`'s 32-byte random-fetching function. This also provided a backwards-compatibility story as the existing HTLC randomization key was re-used for older clients. In 28eea12bbe0d78d256f79ec725cf02366dce4e36 `MppId` was renamed to the current `PaymentId` which was then used expose the `retry_payment` interface, allowing users to send new HTLCs which are considered a part of an existing payment. At no point has the payment-sending API seriously considered idempotency, a major drawback which leaves the API unsafe in most deployments. Luckily, there is a simple solution - because the `PaymentId` must be unique, and because payment information for a given payment is held for several blocks after a payment completes/fails, it represents an obvious idempotency token. Here we simply require the user provide the `PaymentId` directly in `send_payment`, allowing them to use whatever token they may already have for a payment's idempotency token.
2022-10-06 21:31:02 +00:00
nodes[0].node.send_payment(&route, payment_hash_success, &Some(payment_secret_success), PaymentId(payment_hash_success.0)).unwrap();
check_added_monitors!(nodes[0], 1);
pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], 40_000, payment_hash_success, payment_secret_success);
claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage_success);
// If the hop gives fee_insufficient but enough fees were provided, then the previous hop
// malleated the payment before forwarding, taking funds when they shouldn't have.
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[2]);
let short_channel_id = channels[0].0.contents.short_channel_id;
run_onion_failure_test("fee_insufficient", 0, &nodes, &route, &payment_hash, &payment_secret, |msg| {
msg.amount_msat -= 1;
}, || {}, true, Some(UPDATE|12), Some(NetworkUpdate::ChannelFailure { short_channel_id, is_permanent: true}), Some(short_channel_id));
// In an earlier version, we spuriously failed to forward payments if the expected feerate
// changed between the channel open and the payment.
{
let mut feerate_lock = chanmon_cfgs[1].fee_estimator.sat_per_kw.lock().unwrap();
*feerate_lock *= 2;
}
let (payment_preimage_success, payment_hash_success, payment_secret_success) = get_payment_preimage_hash!(nodes[2]);
Allow users to specify the `PaymentId` for new outbound payments In c986e52ce83e9aeaa9447abebc5f6600470337cf, an `MppId` was added to `HTLCSource` objects as a way of correlating HTLCs which belong to the same payment when the `ChannelManager` sees an HTLC succeed/fail. This allows it to have awareness of the state of all HTLCs in a payment when it generates the ultimate user-facing payment success/failure events. This was used in the same PR to avoid generating duplicative success/failure events for a single payment. Because the field was only used as an internal token to correlate HTLCs, and retries were not supported, it was generated randomly by calling the `KeysInterface`'s 32-byte random-fetching function. This also provided a backwards-compatibility story as the existing HTLC randomization key was re-used for older clients. In 28eea12bbe0d78d256f79ec725cf02366dce4e36 `MppId` was renamed to the current `PaymentId` which was then used expose the `retry_payment` interface, allowing users to send new HTLCs which are considered a part of an existing payment. At no point has the payment-sending API seriously considered idempotency, a major drawback which leaves the API unsafe in most deployments. Luckily, there is a simple solution - because the `PaymentId` must be unique, and because payment information for a given payment is held for several blocks after a payment completes/fails, it represents an obvious idempotency token. Here we simply require the user provide the `PaymentId` directly in `send_payment`, allowing them to use whatever token they may already have for a payment's idempotency token.
2022-10-06 21:31:02 +00:00
nodes[0].node.send_payment(&route, payment_hash_success, &Some(payment_secret_success), PaymentId(payment_hash_success.0)).unwrap();
check_added_monitors!(nodes[0], 1);
pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], 40_000, payment_hash_success, payment_secret_success);
claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage_success);
}
#[test]
fn test_onion_failure() {
// When we check for amount_below_minimum below, we want to test that we're using the *right*
// amount, thus we need different htlc_minimum_msat values. We set node[2]'s htlc_minimum_msat
// to 2000, which is above the default value of 1000 set in create_node_chanmgrs.
// This exposed a previous bug because we were using the wrong value all the way down in
// Channel::get_counterparty_htlc_minimum_msat().
let mut node_2_cfg: UserConfig = Default::default();
node_2_cfg.channel_handshake_config.our_htlc_minimum_msat = 2000;
node_2_cfg.channel_handshake_config.announced_channel = true;
node_2_cfg.channel_handshake_limits.force_announced_channel_preference = false;
// When this test was written, the default base fee floated based on the HTLC count.
// It is now fixed, so we simply set the fee to the expected value here.
let mut config = test_default_channel_config();
config.channel_config.forwarding_fee_base_msat = 196;
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[Some(config), Some(config), Some(node_2_cfg)]);
let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
let channels = [create_announced_chan_between_nodes(&nodes, 0, 1), create_announced_chan_between_nodes(&nodes, 1, 2)];
for node in nodes.iter() {
*node.keys_manager.override_random_bytes.lock().unwrap() = Some([3; 32]);
}
let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 40000);
// positive case
send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 40000);
// intermediate node failure
let short_channel_id = channels[1].0.contents.short_channel_id;
run_onion_failure_test("invalid_realm", 0, &nodes, &route, &payment_hash, &payment_secret, |msg| {
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let cur_height = nodes[0].best_block_info().1 + 1;
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
let (mut onion_payloads, _htlc_msat, _htlc_cltv) = onion_utils::build_onion_payloads(&route.paths[0], 40000, &None, cur_height, &None).unwrap();
let mut new_payloads = Vec::new();
for payload in onion_payloads.drain(..) {
new_payloads.push(BogusOnionHopData::new(payload));
}
// break the first (non-final) hop payload by swapping the realm (0) byte for a byte
// describing a length-1 TLV payload, which is obviously bogus.
new_payloads[0].data[0] = 1;
2022-09-30 01:29:02 +02:00
msg.onion_routing_packet = onion_utils::construct_onion_packet_with_writable_hopdata(new_payloads, onion_keys, [0; 32], &payment_hash);
}, ||{}, true, Some(PERM|22), Some(NetworkUpdate::ChannelFailure{short_channel_id, is_permanent: true}), Some(short_channel_id));
// final node failure
let short_channel_id = channels[1].0.contents.short_channel_id;
run_onion_failure_test("invalid_realm", 3, &nodes, &route, &payment_hash, &payment_secret, |msg| {
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let cur_height = nodes[0].best_block_info().1 + 1;
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
let (mut onion_payloads, _htlc_msat, _htlc_cltv) = onion_utils::build_onion_payloads(&route.paths[0], 40000, &None, cur_height, &None).unwrap();
let mut new_payloads = Vec::new();
for payload in onion_payloads.drain(..) {
new_payloads.push(BogusOnionHopData::new(payload));
}
// break the last-hop payload by swapping the realm (0) byte for a byte describing a
// length-1 TLV payload, which is obviously bogus.
new_payloads[1].data[0] = 1;
2022-09-30 01:29:02 +02:00
msg.onion_routing_packet = onion_utils::construct_onion_packet_with_writable_hopdata(new_payloads, onion_keys, [0; 32], &payment_hash);
}, ||{}, false, Some(PERM|22), Some(NetworkUpdate::ChannelFailure{short_channel_id, is_permanent: true}), Some(short_channel_id));
// the following three with run_onion_failure_test_with_fail_intercept() test only the origin node
// receiving simulated fail messages
// intermediate node failure
run_onion_failure_test_with_fail_intercept("temporary_node_failure", 100, &nodes, &route, &payment_hash, &payment_secret, |msg| {
// trigger error
msg.amount_msat -= 1;
}, |msg| {
// and tamper returning error message
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
2022-05-05 17:59:38 +02:00
msg.reason = onion_utils::build_first_hop_failure_packet(onion_keys[0].shared_secret.as_ref(), NODE|2, &[0;0]);
}, ||{}, true, Some(NODE|2), Some(NetworkUpdate::NodeFailure{node_id: route.paths[0][0].pubkey, is_permanent: false}), Some(route.paths[0][0].short_channel_id));
// final node failure
run_onion_failure_test_with_fail_intercept("temporary_node_failure", 200, &nodes, &route, &payment_hash, &payment_secret, |_msg| {}, |msg| {
// and tamper returning error message
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
2022-05-05 17:59:38 +02:00
msg.reason = onion_utils::build_first_hop_failure_packet(onion_keys[1].shared_secret.as_ref(), NODE|2, &[0;0]);
}, ||{
nodes[2].node.fail_htlc_backwards(&payment_hash);
}, true, Some(NODE|2), Some(NetworkUpdate::NodeFailure{node_id: route.paths[0][1].pubkey, is_permanent: false}), Some(route.paths[0][1].short_channel_id));
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[2]);
// intermediate node failure
run_onion_failure_test_with_fail_intercept("permanent_node_failure", 100, &nodes, &route, &payment_hash, &payment_secret, |msg| {
msg.amount_msat -= 1;
}, |msg| {
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
2022-05-05 17:59:38 +02:00
msg.reason = onion_utils::build_first_hop_failure_packet(onion_keys[0].shared_secret.as_ref(), PERM|NODE|2, &[0;0]);
}, ||{}, true, Some(PERM|NODE|2), Some(NetworkUpdate::NodeFailure{node_id: route.paths[0][0].pubkey, is_permanent: true}), Some(route.paths[0][0].short_channel_id));
// final node failure
run_onion_failure_test_with_fail_intercept("permanent_node_failure", 200, &nodes, &route, &payment_hash, &payment_secret, |_msg| {}, |msg| {
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
2022-05-05 17:59:38 +02:00
msg.reason = onion_utils::build_first_hop_failure_packet(onion_keys[1].shared_secret.as_ref(), PERM|NODE|2, &[0;0]);
}, ||{
nodes[2].node.fail_htlc_backwards(&payment_hash);
}, false, Some(PERM|NODE|2), Some(NetworkUpdate::NodeFailure{node_id: route.paths[0][1].pubkey, is_permanent: true}), Some(route.paths[0][1].short_channel_id));
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[2]);
// intermediate node failure
run_onion_failure_test_with_fail_intercept("required_node_feature_missing", 100, &nodes, &route, &payment_hash, &payment_secret, |msg| {
msg.amount_msat -= 1;
}, |msg| {
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
2022-05-05 17:59:38 +02:00
msg.reason = onion_utils::build_first_hop_failure_packet(onion_keys[0].shared_secret.as_ref(), PERM|NODE|3, &[0;0]);
}, ||{
nodes[2].node.fail_htlc_backwards(&payment_hash);
}, true, Some(PERM|NODE|3), Some(NetworkUpdate::NodeFailure{node_id: route.paths[0][0].pubkey, is_permanent: true}), Some(route.paths[0][0].short_channel_id));
// final node failure
run_onion_failure_test_with_fail_intercept("required_node_feature_missing", 200, &nodes, &route, &payment_hash, &payment_secret, |_msg| {}, |msg| {
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
2022-05-05 17:59:38 +02:00
msg.reason = onion_utils::build_first_hop_failure_packet(onion_keys[1].shared_secret.as_ref(), PERM|NODE|3, &[0;0]);
}, ||{
nodes[2].node.fail_htlc_backwards(&payment_hash);
}, false, Some(PERM|NODE|3), Some(NetworkUpdate::NodeFailure{node_id: route.paths[0][1].pubkey, is_permanent: true}), Some(route.paths[0][1].short_channel_id));
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[2]);
// Our immediate peer sent UpdateFailMalformedHTLC because it couldn't understand the onion in
// the UpdateAddHTLC that we sent.
let short_channel_id = channels[0].0.contents.short_channel_id;
run_onion_failure_test("invalid_onion_version", 0, &nodes, &route, &payment_hash, &payment_secret, |msg| { msg.onion_routing_packet.version = 1; }, ||{}, true,
Some(BADONION|PERM|4), None, Some(short_channel_id));
run_onion_failure_test("invalid_onion_hmac", 0, &nodes, &route, &payment_hash, &payment_secret, |msg| { msg.onion_routing_packet.hmac = [3; 32]; }, ||{}, true,
Some(BADONION|PERM|5), None, Some(short_channel_id));
run_onion_failure_test("invalid_onion_key", 0, &nodes, &route, &payment_hash, &payment_secret, |msg| { msg.onion_routing_packet.public_key = Err(secp256k1::Error::InvalidPublicKey);}, ||{}, true,
Some(BADONION|PERM|6), None, Some(short_channel_id));
let short_channel_id = channels[1].0.contents.short_channel_id;
let chan_update = ChannelUpdate::dummy(short_channel_id);
let mut err_data = Vec::new();
err_data.extend_from_slice(&(chan_update.serialized_length() as u16 + 2).to_be_bytes());
err_data.extend_from_slice(&ChannelUpdate::TYPE.to_be_bytes());
err_data.extend_from_slice(&chan_update.encode());
run_onion_failure_test_with_fail_intercept("temporary_channel_failure", 100, &nodes, &route, &payment_hash, &payment_secret, |msg| {
msg.amount_msat -= 1;
}, |msg| {
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
msg.reason = onion_utils::build_first_hop_failure_packet(onion_keys[0].shared_secret.as_ref(), UPDATE|7, &err_data);
}, ||{}, true, Some(UPDATE|7), Some(NetworkUpdate::ChannelUpdateMessage{msg: chan_update.clone()}), Some(short_channel_id));
// Check we can still handle onion failures that include channel updates without a type prefix
let err_data_without_type = chan_update.encode_with_len();
run_onion_failure_test_with_fail_intercept("temporary_channel_failure", 100, &nodes, &route, &payment_hash, &payment_secret, |msg| {
msg.amount_msat -= 1;
}, |msg| {
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
msg.reason = onion_utils::build_first_hop_failure_packet(onion_keys[0].shared_secret.as_ref(), UPDATE|7, &err_data_without_type);
}, ||{}, true, Some(UPDATE|7), Some(NetworkUpdate::ChannelUpdateMessage{msg: chan_update}), Some(short_channel_id));
let short_channel_id = channels[1].0.contents.short_channel_id;
run_onion_failure_test_with_fail_intercept("permanent_channel_failure", 100, &nodes, &route, &payment_hash, &payment_secret, |msg| {
msg.amount_msat -= 1;
}, |msg| {
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
2022-05-05 17:59:38 +02:00
msg.reason = onion_utils::build_first_hop_failure_packet(onion_keys[0].shared_secret.as_ref(), PERM|8, &[0;0]);
// short_channel_id from the processing node
}, ||{}, true, Some(PERM|8), Some(NetworkUpdate::ChannelFailure{short_channel_id, is_permanent: true}), Some(short_channel_id));
let short_channel_id = channels[1].0.contents.short_channel_id;
run_onion_failure_test_with_fail_intercept("required_channel_feature_missing", 100, &nodes, &route, &payment_hash, &payment_secret, |msg| {
msg.amount_msat -= 1;
}, |msg| {
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
2022-05-05 17:59:38 +02:00
msg.reason = onion_utils::build_first_hop_failure_packet(onion_keys[0].shared_secret.as_ref(), PERM|9, &[0;0]);
// short_channel_id from the processing node
}, ||{}, true, Some(PERM|9), Some(NetworkUpdate::ChannelFailure{short_channel_id, is_permanent: true}), Some(short_channel_id));
let mut bogus_route = route.clone();
bogus_route.paths[0][1].short_channel_id -= 1;
let short_channel_id = bogus_route.paths[0][1].short_channel_id;
run_onion_failure_test("unknown_next_peer", 0, &nodes, &bogus_route, &payment_hash, &payment_secret, |_| {}, ||{}, true, Some(PERM|10),
Some(NetworkUpdate::ChannelFailure{short_channel_id, is_permanent:true}), Some(short_channel_id));
let short_channel_id = channels[1].0.contents.short_channel_id;
2022-11-26 09:02:20 +01:00
let amt_to_forward = nodes[1].node.per_peer_state.read().unwrap().get(&nodes[2].node.get_our_node_id())
.unwrap().lock().unwrap().channel_by_id.get(&channels[1].2).unwrap()
.get_counterparty_htlc_minimum_msat() - 1;
let mut bogus_route = route.clone();
let route_len = bogus_route.paths[0].len();
bogus_route.paths[0][route_len-1].fee_msat = amt_to_forward;
run_onion_failure_test("amount_below_minimum", 0, &nodes, &bogus_route, &payment_hash, &payment_secret, |_| {}, ||{}, true, Some(UPDATE|11), Some(NetworkUpdate::ChannelUpdateMessage{msg: ChannelUpdate::dummy(short_channel_id)}), Some(short_channel_id));
// Clear pending payments so that the following positive test has the correct payment hash.
for node in nodes.iter() {
node.node.clear_pending_payments();
}
// Test a positive test-case with one extra msat, meeting the minimum.
bogus_route.paths[0][route_len-1].fee_msat = amt_to_forward + 1;
let preimage = send_along_route(&nodes[0], bogus_route, &[&nodes[1], &nodes[2]], amt_to_forward+1).0;
claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], preimage);
let short_channel_id = channels[0].0.contents.short_channel_id;
run_onion_failure_test("fee_insufficient", 0, &nodes, &route, &payment_hash, &payment_secret, |msg| {
msg.amount_msat -= 1;
}, || {}, true, Some(UPDATE|12), Some(NetworkUpdate::ChannelFailure { short_channel_id, is_permanent: true}), Some(short_channel_id));
let short_channel_id = channels[0].0.contents.short_channel_id;
run_onion_failure_test("incorrect_cltv_expiry", 0, &nodes, &route, &payment_hash, &payment_secret, |msg| {
// need to violate: cltv_expiry - cltv_expiry_delta >= outgoing_cltv_value
msg.cltv_expiry -= 1;
}, || {}, true, Some(UPDATE|13), Some(NetworkUpdate::ChannelFailure { short_channel_id, is_permanent: true}), Some(short_channel_id));
let short_channel_id = channels[1].0.contents.short_channel_id;
run_onion_failure_test("expiry_too_soon", 0, &nodes, &route, &payment_hash, &payment_secret, |msg| {
let height = msg.cltv_expiry - CLTV_CLAIM_BUFFER - LATENCY_GRACE_PERIOD_BLOCKS + 1;
connect_blocks(&nodes[0], height - nodes[0].best_block_info().1);
connect_blocks(&nodes[1], height - nodes[1].best_block_info().1);
connect_blocks(&nodes[2], height - nodes[2].best_block_info().1);
}, ||{}, true, Some(UPDATE|14), Some(NetworkUpdate::ChannelUpdateMessage{msg: ChannelUpdate::dummy(short_channel_id)}), Some(short_channel_id));
run_onion_failure_test("unknown_payment_hash", 2, &nodes, &route, &payment_hash, &payment_secret, |_| {}, || {
nodes[2].node.fail_htlc_backwards(&payment_hash);
}, false, Some(PERM|15), None, None);
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[2]);
run_onion_failure_test("final_expiry_too_soon", 1, &nodes, &route, &payment_hash, &payment_secret, |msg| {
let height = msg.cltv_expiry - CLTV_CLAIM_BUFFER - LATENCY_GRACE_PERIOD_BLOCKS + 1;
connect_blocks(&nodes[0], height - nodes[0].best_block_info().1);
connect_blocks(&nodes[1], height - nodes[1].best_block_info().1);
connect_blocks(&nodes[2], height - nodes[2].best_block_info().1);
}, || {}, false, Some(0x4000 | 15), None, None);
run_onion_failure_test("final_incorrect_cltv_expiry", 1, &nodes, &route, &payment_hash, &payment_secret, |_| {}, || {
for (_, pending_forwards) in nodes[1].node.forward_htlcs.lock().unwrap().iter_mut() {
for f in pending_forwards.iter_mut() {
match f {
&mut HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo { ref mut forward_info, .. }) =>
forward_info.outgoing_cltv_value += 1,
_ => {},
}
}
}
}, true, Some(18), None, Some(channels[1].0.contents.short_channel_id));
run_onion_failure_test("final_incorrect_htlc_amount", 1, &nodes, &route, &payment_hash, &payment_secret, |_| {}, || {
// violate amt_to_forward > msg.amount_msat
for (_, pending_forwards) in nodes[1].node.forward_htlcs.lock().unwrap().iter_mut() {
for f in pending_forwards.iter_mut() {
match f {
&mut HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo { ref mut forward_info, .. }) =>
forward_info.outgoing_amt_msat -= 1,
_ => {},
}
}
}
}, true, Some(19), None, Some(channels[1].0.contents.short_channel_id));
let short_channel_id = channels[1].0.contents.short_channel_id;
run_onion_failure_test("channel_disabled", 0, &nodes, &route, &payment_hash, &payment_secret, |_| {}, || {
// disconnect event to the channel between nodes[1] ~ nodes[2]
nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false);
nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
}, true, Some(UPDATE|20), Some(NetworkUpdate::ChannelUpdateMessage{msg: ChannelUpdate::dummy(short_channel_id)}), Some(short_channel_id));
reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
run_onion_failure_test("expiry_too_far", 0, &nodes, &route, &payment_hash, &payment_secret, |msg| {
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let mut route = route.clone();
let height = nodes[2].best_block_info().1;
route.paths[0][1].cltv_expiry_delta += CLTV_FAR_FAR_AWAY + route.paths[0][0].cltv_expiry_delta + 1;
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
let (onion_payloads, _, htlc_cltv) = onion_utils::build_onion_payloads(&route.paths[0], 40000, &None, height, &None).unwrap();
let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, [0; 32], &payment_hash);
msg.cltv_expiry = htlc_cltv;
msg.onion_routing_packet = onion_packet;
}, ||{}, true, Some(21), Some(NetworkUpdate::NodeFailure{node_id: route.paths[0][0].pubkey, is_permanent: true}), Some(route.paths[0][0].short_channel_id));
run_onion_failure_test_with_fail_intercept("mpp_timeout", 200, &nodes, &route, &payment_hash, &payment_secret, |_msg| {}, |msg| {
// Tamper returning error message
let session_priv = SecretKey::from_slice(&[3; 32]).unwrap();
let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
2022-05-05 17:59:38 +02:00
msg.reason = onion_utils::build_first_hop_failure_packet(onion_keys[1].shared_secret.as_ref(), 23, &[0;0]);
}, ||{
nodes[2].node.fail_htlc_backwards(&payment_hash);
}, true, Some(23), None, None);
}
fn do_test_onion_failure_stale_channel_update(announced_channel: bool) {
// Create a network of three nodes and two channels connecting them. We'll be updating the
// HTLC relay policy of the second channel, causing forwarding failures at the first hop.
let mut config = UserConfig::default();
config.channel_handshake_config.announced_channel = announced_channel;
config.channel_handshake_limits.force_announced_channel_preference = false;
config.accept_forwards_to_priv_channels = !announced_channel;
let chanmon_cfgs = create_chanmon_cfgs(3);
let persister;
let chain_monitor;
let channel_manager_1_deserialized;
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(config), None]);
let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
let other_channel = create_chan_between_nodes(
&nodes[0], &nodes[1],
);
let channel_to_update = if announced_channel {
let channel = create_announced_chan_between_nodes(
&nodes, 1, 2,
);
(channel.2, channel.0.contents.short_channel_id)
} else {
let channel = create_unannounced_chan_between_nodes_with_value(
&nodes, 1, 2, 100000, 10001,
);
(channel.0.channel_id, channel.0.short_channel_id_alias.unwrap())
};
let channel_to_update_counterparty = &nodes[2].node.get_our_node_id();
let default_config = ChannelConfig::default();
// A test payment should succeed as the ChannelConfig has not been changed yet.
const PAYMENT_AMT: u64 = 40000;
let (route, payment_hash, payment_preimage, payment_secret) = if announced_channel {
get_route_and_payment_hash!(nodes[0], nodes[2], PAYMENT_AMT)
} else {
let hop_hints = vec![RouteHint(vec![RouteHintHop {
src_node_id: nodes[1].node.get_our_node_id(),
short_channel_id: channel_to_update.1,
fees: RoutingFees {
base_msat: default_config.forwarding_fee_base_msat,
proportional_millionths: default_config.forwarding_fee_proportional_millionths,
},
cltv_expiry_delta: default_config.cltv_expiry_delta,
htlc_maximum_msat: None,
htlc_minimum_msat: None,
}])];
let payment_params = PaymentParameters::from_node_id(*channel_to_update_counterparty)
.with_features(nodes[2].node.invoice_features())
.with_route_hints(hop_hints);
get_route_and_payment_hash!(nodes[0], nodes[2], payment_params, PAYMENT_AMT, TEST_FINAL_CLTV)
};
send_along_route_with_secret(&nodes[0], route.clone(), &[&[&nodes[1], &nodes[2]]], PAYMENT_AMT,
payment_hash, payment_secret);
claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
// Closure to force expiry of a channel's previous config.
let expire_prev_config = || {
for _ in 0..EXPIRE_PREV_CONFIG_TICKS {
nodes[1].node.timer_tick_occurred();
}
};
// Closure to update and retrieve the latest ChannelUpdate.
let update_and_get_channel_update = |config: &ChannelConfig, expect_new_update: bool,
prev_update: Option<&msgs::ChannelUpdate>, should_expire_prev_config: bool| -> Option<msgs::ChannelUpdate> {
nodes[1].node.update_channel_config(
channel_to_update_counterparty, &[channel_to_update.0], config,
).unwrap();
let events = nodes[1].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), expect_new_update as usize);
if !expect_new_update {
return None;
}
let new_update = match &events[0] {
MessageSendEvent::BroadcastChannelUpdate { msg } => {
assert!(announced_channel);
msg.clone()
},
MessageSendEvent::SendChannelUpdate { node_id, msg } => {
assert_eq!(node_id, channel_to_update_counterparty);
assert!(!announced_channel);
msg.clone()
},
_ => panic!("expected Broadcast/SendChannelUpdate event"),
};
if prev_update.is_some() {
assert!(new_update.contents.timestamp > prev_update.unwrap().contents.timestamp)
}
if should_expire_prev_config {
expire_prev_config();
}
Some(new_update)
};
// We'll be attempting to route payments using the default ChannelUpdate for channels. This will
// lead to onion failures at the first hop once we update the ChannelConfig for the
// second hop.
let expect_onion_failure = |name: &str, error_code: u16, channel_update: &msgs::ChannelUpdate| {
let short_channel_id = channel_to_update.1;
let network_update = NetworkUpdate::ChannelUpdateMessage { msg: channel_update.clone() };
run_onion_failure_test(
name, 0, &nodes, &route, &payment_hash, &payment_secret, |_| {}, || {}, true,
Some(error_code), Some(network_update), Some(short_channel_id),
);
};
// Updates to cltv_expiry_delta below MIN_CLTV_EXPIRY_DELTA should fail with APIMisuseError.
let mut invalid_config = default_config.clone();
invalid_config.cltv_expiry_delta = 0;
match nodes[1].node.update_channel_config(
channel_to_update_counterparty, &[channel_to_update.0], &invalid_config,
) {
Err(APIError::APIMisuseError{ .. }) => {},
_ => panic!("unexpected result applying invalid cltv_expiry_delta"),
}
// Increase the base fee which should trigger a new ChannelUpdate.
let mut config = nodes[1].node.list_usable_channels().iter()
.find(|channel| channel.channel_id == channel_to_update.0).unwrap()
.config.unwrap();
config.forwarding_fee_base_msat = u32::max_value();
let msg = update_and_get_channel_update(&config, true, None, false).unwrap();
// The old policy should still be in effect until a new block is connected.
send_along_route_with_secret(&nodes[0], route.clone(), &[&[&nodes[1], &nodes[2]]], PAYMENT_AMT,
payment_hash, payment_secret);
claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
// Connect a block, which should expire the previous config, leading to a failure when
// forwarding the HTLC.
expire_prev_config();
expect_onion_failure("fee_insufficient", UPDATE|12, &msg);
// Redundant updates should not trigger a new ChannelUpdate.
assert!(update_and_get_channel_update(&config, false, None, false).is_none());
// Similarly, updates that do not have an affect on ChannelUpdate should not trigger a new one.
config.force_close_avoidance_max_fee_satoshis *= 2;
assert!(update_and_get_channel_update(&config, false, None, false).is_none());
// Reset the base fee to the default and increase the proportional fee which should trigger a
// new ChannelUpdate.
config.forwarding_fee_base_msat = default_config.forwarding_fee_base_msat;
config.cltv_expiry_delta = u16::max_value();
let msg = update_and_get_channel_update(&config, true, Some(&msg), true).unwrap();
expect_onion_failure("incorrect_cltv_expiry", UPDATE|13, &msg);
// Reset the proportional fee and increase the CLTV expiry delta which should trigger a new
// ChannelUpdate.
config.cltv_expiry_delta = default_config.cltv_expiry_delta;
config.forwarding_fee_proportional_millionths = u32::max_value();
let msg = update_and_get_channel_update(&config, true, Some(&msg), true).unwrap();
expect_onion_failure("fee_insufficient", UPDATE|12, &msg);
// To test persistence of the updated config, we'll re-initialize the ChannelManager.
let config_after_restart = {
let chan_1_monitor_serialized = get_monitor!(nodes[1], other_channel.3).encode();
let chan_2_monitor_serialized = get_monitor!(nodes[1], channel_to_update.0).encode();
reload_node!(nodes[1], *nodes[1].node.get_current_default_configuration(), &nodes[1].node.encode(),
&[&chan_1_monitor_serialized, &chan_2_monitor_serialized], persister, chain_monitor, channel_manager_1_deserialized);
nodes[1].node.list_channels().iter()
.find(|channel| channel.channel_id == channel_to_update.0).unwrap()
.config.unwrap()
};
assert_eq!(config, config_after_restart);
}
#[test]
fn test_onion_failure_stale_channel_update() {
do_test_onion_failure_stale_channel_update(false);
do_test_onion_failure_stale_channel_update(true);
}
#[test]
fn test_always_create_tlv_format_onion_payloads() {
// Verify that we always generate tlv onion format payloads, even if the features specifically
// specifies no support for variable length onions, as the legacy payload format has been
// deprecated in BOLT4.
let chanmon_cfgs = create_chanmon_cfgs(3);
let mut node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
// Set `node[1]`'s init features to features which return `false` for
// `supports_variable_length_onion()`
let mut no_variable_length_onion_features = InitFeatures::empty();
no_variable_length_onion_features.set_static_remote_key_required();
*node_cfgs[1].override_init_features.borrow_mut() = Some(no_variable_length_onion_features);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1);
create_announced_chan_between_nodes(&nodes, 1, 2);
let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id())
.with_features(InvoiceFeatures::empty());
let (route, _payment_hash, _payment_preimage, _payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], payment_params, 40000, TEST_FINAL_CLTV);
let hops = &route.paths[0];
// Asserts that the first hop to `node[1]` signals no support for variable length onions.
assert!(!hops[0].node_features.supports_variable_length_onion());
// Asserts that the first hop to `node[1]` signals no support for variable length onions.
assert!(!hops[1].node_features.supports_variable_length_onion());
let cur_height = nodes[0].best_block_info().1 + 1;
let (onion_payloads, _htlc_msat, _htlc_cltv) = onion_utils::build_onion_payloads(&route.paths[0], 40000, &None, cur_height, &None).unwrap();
match onion_payloads[0].format {
msgs::OnionHopDataFormat::NonFinalNode {..} => {},
_ => { panic!(
"Should have generated a `msgs::OnionHopDataFormat::NonFinalNode` payload for `hops[0]`,
despite that the features signals no support for variable length onions"
)}
}
match onion_payloads[1].format {
msgs::OnionHopDataFormat::FinalNode {..} => {},
_ => {panic!(
"Should have generated a `msgs::OnionHopDataFormat::FinalNode` payload for `hops[1]`,
despite that the features signals no support for variable length onions"
)}
}
}
macro_rules! get_phantom_route {
($nodes: expr, $amt: expr, $channel: expr) => {{
let secp_ctx = Secp256k1::new();
let phantom_secret = $nodes[1].keys_manager.get_node_secret(Recipient::PhantomNode).unwrap();
let phantom_pubkey = PublicKey::from_secret_key(&secp_ctx, &phantom_secret);
let phantom_route_hint = $nodes[1].node.get_phantom_route_hints();
let payment_params = PaymentParameters::from_node_id(phantom_pubkey)
.with_features($nodes[1].node.invoice_features())
.with_route_hints(vec![RouteHint(vec![
RouteHintHop {
src_node_id: $nodes[0].node.get_our_node_id(),
short_channel_id: $channel.0.contents.short_channel_id,
fees: RoutingFees {
base_msat: $channel.0.contents.fee_base_msat,
proportional_millionths: $channel.0.contents.fee_proportional_millionths,
},
cltv_expiry_delta: $channel.0.contents.cltv_expiry_delta,
htlc_minimum_msat: None,
htlc_maximum_msat: None,
},
RouteHintHop {
src_node_id: phantom_route_hint.real_node_pubkey,
short_channel_id: phantom_route_hint.phantom_scid,
fees: RoutingFees {
base_msat: 0,
proportional_millionths: 0,
},
cltv_expiry_delta: MIN_CLTV_EXPIRY_DELTA,
htlc_minimum_msat: None,
htlc_maximum_msat: None,
}
])]);
let scorer = test_utils::TestScorer::with_penalty(0);
let network_graph = $nodes[0].network_graph.read_only();
(get_route(
&$nodes[0].node.get_our_node_id(), &payment_params, &network_graph,
Some(&$nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
$amt, TEST_FINAL_CLTV, $nodes[0].logger, &scorer, &[0u8; 32]
).unwrap(), phantom_route_hint.phantom_scid)
}
}}
#[test]
fn test_phantom_onion_hmac_failure() {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
// Get the route.
let recv_value_msat = 10_000;
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[1], Some(recv_value_msat));
let (route, phantom_scid) = get_phantom_route!(nodes, recv_value_msat, channel);
// Route the HTLC through to the destination.
Allow users to specify the `PaymentId` for new outbound payments In c986e52ce83e9aeaa9447abebc5f6600470337cf, an `MppId` was added to `HTLCSource` objects as a way of correlating HTLCs which belong to the same payment when the `ChannelManager` sees an HTLC succeed/fail. This allows it to have awareness of the state of all HTLCs in a payment when it generates the ultimate user-facing payment success/failure events. This was used in the same PR to avoid generating duplicative success/failure events for a single payment. Because the field was only used as an internal token to correlate HTLCs, and retries were not supported, it was generated randomly by calling the `KeysInterface`'s 32-byte random-fetching function. This also provided a backwards-compatibility story as the existing HTLC randomization key was re-used for older clients. In 28eea12bbe0d78d256f79ec725cf02366dce4e36 `MppId` was renamed to the current `PaymentId` which was then used expose the `retry_payment` interface, allowing users to send new HTLCs which are considered a part of an existing payment. At no point has the payment-sending API seriously considered idempotency, a major drawback which leaves the API unsafe in most deployments. Luckily, there is a simple solution - because the `PaymentId` must be unique, and because payment information for a given payment is held for several blocks after a payment completes/fails, it represents an obvious idempotency token. Here we simply require the user provide the `PaymentId` directly in `send_payment`, allowing them to use whatever token they may already have for a payment's idempotency token.
2022-10-06 21:31:02 +00:00
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let mut update_add = update_0.update_add_htlcs[0].clone();
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
// Modify the payload so the phantom hop's HMAC is bogus.
let sha256_of_onion = {
let mut forward_htlcs = nodes[1].node.forward_htlcs.lock().unwrap();
let mut pending_forward = forward_htlcs.get_mut(&phantom_scid).unwrap();
match pending_forward[0] {
HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
forward_info: PendingHTLCInfo {
routing: PendingHTLCRouting::Forward { ref mut onion_packet, .. },
..
}, ..
}) => {
onion_packet.hmac[onion_packet.hmac.len() - 1] ^= 1;
Sha256::hash(&onion_packet.hop_data).into_inner().to_vec()
},
_ => panic!("Unexpected forward"),
}
};
expect_pending_htlcs_forwardable_ignore!(nodes[1]);
nodes[1].node.process_pending_htlc_forwards();
expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
nodes[1].node.process_pending_htlc_forwards();
let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
check_added_monitors!(&nodes[1], 1);
assert!(update_1.update_fail_htlcs.len() == 1);
let fail_msg = update_1.update_fail_htlcs[0].clone();
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
// Ensure the payment fails with the expected error.
let mut fail_conditions = PaymentFailedConditions::new()
.blamed_scid(phantom_scid)
.blamed_chan_closed(true)
.expected_htlc_error_data(0x8000 | 0x4000 | 5, &sha256_of_onion);
expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions);
}
#[test]
fn test_phantom_invalid_onion_payload() {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
// Get the route.
let recv_value_msat = 10_000;
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[1], Some(recv_value_msat));
let (route, phantom_scid) = get_phantom_route!(nodes, recv_value_msat, channel);
// We'll use the session priv later when constructing an invalid onion packet.
let session_priv = [3; 32];
*nodes[0].keys_manager.override_random_bytes.lock().unwrap() = Some(session_priv);
Allow users to specify the `PaymentId` for new outbound payments In c986e52ce83e9aeaa9447abebc5f6600470337cf, an `MppId` was added to `HTLCSource` objects as a way of correlating HTLCs which belong to the same payment when the `ChannelManager` sees an HTLC succeed/fail. This allows it to have awareness of the state of all HTLCs in a payment when it generates the ultimate user-facing payment success/failure events. This was used in the same PR to avoid generating duplicative success/failure events for a single payment. Because the field was only used as an internal token to correlate HTLCs, and retries were not supported, it was generated randomly by calling the `KeysInterface`'s 32-byte random-fetching function. This also provided a backwards-compatibility story as the existing HTLC randomization key was re-used for older clients. In 28eea12bbe0d78d256f79ec725cf02366dce4e36 `MppId` was renamed to the current `PaymentId` which was then used expose the `retry_payment` interface, allowing users to send new HTLCs which are considered a part of an existing payment. At no point has the payment-sending API seriously considered idempotency, a major drawback which leaves the API unsafe in most deployments. Luckily, there is a simple solution - because the `PaymentId` must be unique, and because payment information for a given payment is held for several blocks after a payment completes/fails, it represents an obvious idempotency token. Here we simply require the user provide the `PaymentId` directly in `send_payment`, allowing them to use whatever token they may already have for a payment's idempotency token.
2022-10-06 21:31:02 +00:00
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let mut update_add = update_0.update_add_htlcs[0].clone();
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
// Modify the onion packet to have an invalid payment amount.
for (_, pending_forwards) in nodes[1].node.forward_htlcs.lock().unwrap().iter_mut() {
for f in pending_forwards.iter_mut() {
match f {
&mut HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
forward_info: PendingHTLCInfo {
routing: PendingHTLCRouting::Forward { ref mut onion_packet, .. },
..
}, ..
}) => {
// Construct the onion payloads for the entire route and an invalid amount.
let height = nodes[0].best_block_info().1;
let session_priv = SecretKey::from_slice(&session_priv).unwrap();
let mut onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route.paths[0], &session_priv).unwrap();
let (mut onion_payloads, _, _) = onion_utils::build_onion_payloads(&route.paths[0], msgs::MAX_VALUE_MSAT + 1, &Some(payment_secret), height + 1, &None).unwrap();
// We only want to construct the onion packet for the last hop, not the entire route, so
// remove the first hop's payload and its keys.
onion_keys.remove(0);
onion_payloads.remove(0);
let new_onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, [0; 32], &payment_hash);
onion_packet.hop_data = new_onion_packet.hop_data;
onion_packet.hmac = new_onion_packet.hmac;
},
_ => panic!("Unexpected forward"),
}
}
}
expect_pending_htlcs_forwardable_ignore!(nodes[1]);
nodes[1].node.process_pending_htlc_forwards();
expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
nodes[1].node.process_pending_htlc_forwards();
let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
check_added_monitors!(&nodes[1], 1);
assert!(update_1.update_fail_htlcs.len() == 1);
let fail_msg = update_1.update_fail_htlcs[0].clone();
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
// Ensure the payment fails with the expected error.
let error_data = Vec::new();
let mut fail_conditions = PaymentFailedConditions::new()
.blamed_scid(phantom_scid)
.blamed_chan_closed(true)
.expected_htlc_error_data(0x4000 | 22, &error_data);
expect_payment_failed_conditions(&nodes[0], payment_hash, true, fail_conditions);
}
#[test]
fn test_phantom_final_incorrect_cltv_expiry() {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
// Get the route.
let recv_value_msat = 10_000;
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[1], Some(recv_value_msat));
let (route, phantom_scid) = get_phantom_route!(nodes, recv_value_msat, channel);
// Route the HTLC through to the destination.
Allow users to specify the `PaymentId` for new outbound payments In c986e52ce83e9aeaa9447abebc5f6600470337cf, an `MppId` was added to `HTLCSource` objects as a way of correlating HTLCs which belong to the same payment when the `ChannelManager` sees an HTLC succeed/fail. This allows it to have awareness of the state of all HTLCs in a payment when it generates the ultimate user-facing payment success/failure events. This was used in the same PR to avoid generating duplicative success/failure events for a single payment. Because the field was only used as an internal token to correlate HTLCs, and retries were not supported, it was generated randomly by calling the `KeysInterface`'s 32-byte random-fetching function. This also provided a backwards-compatibility story as the existing HTLC randomization key was re-used for older clients. In 28eea12bbe0d78d256f79ec725cf02366dce4e36 `MppId` was renamed to the current `PaymentId` which was then used expose the `retry_payment` interface, allowing users to send new HTLCs which are considered a part of an existing payment. At no point has the payment-sending API seriously considered idempotency, a major drawback which leaves the API unsafe in most deployments. Luckily, there is a simple solution - because the `PaymentId` must be unique, and because payment information for a given payment is held for several blocks after a payment completes/fails, it represents an obvious idempotency token. Here we simply require the user provide the `PaymentId` directly in `send_payment`, allowing them to use whatever token they may already have for a payment's idempotency token.
2022-10-06 21:31:02 +00:00
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let mut update_add = update_0.update_add_htlcs[0].clone();
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
// Modify the payload so the phantom hop's HMAC is bogus.
for (_, pending_forwards) in nodes[1].node.forward_htlcs.lock().unwrap().iter_mut() {
for f in pending_forwards.iter_mut() {
match f {
&mut HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
forward_info: PendingHTLCInfo { ref mut outgoing_cltv_value, .. }, ..
}) => {
*outgoing_cltv_value += 1;
},
_ => panic!("Unexpected forward"),
}
}
}
expect_pending_htlcs_forwardable_ignore!(nodes[1]);
nodes[1].node.process_pending_htlc_forwards();
expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
nodes[1].node.process_pending_htlc_forwards();
let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
check_added_monitors!(&nodes[1], 1);
assert!(update_1.update_fail_htlcs.len() == 1);
let fail_msg = update_1.update_fail_htlcs[0].clone();
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
// Ensure the payment fails with the expected error.
let expected_cltv: u32 = 82;
let error_data = expected_cltv.to_be_bytes().to_vec();
let mut fail_conditions = PaymentFailedConditions::new()
.blamed_scid(phantom_scid)
.expected_htlc_error_data(18, &error_data);
expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions);
}
#[test]
fn test_phantom_failure_too_low_cltv() {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
// Get the route.
let recv_value_msat = 10_000;
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[1], Some(recv_value_msat));
let (mut route, phantom_scid) = get_phantom_route!(nodes, recv_value_msat, channel);
// Modify the route to have a too-low cltv.
route.paths[0][1].cltv_expiry_delta = 5;
// Route the HTLC through to the destination.
Allow users to specify the `PaymentId` for new outbound payments In c986e52ce83e9aeaa9447abebc5f6600470337cf, an `MppId` was added to `HTLCSource` objects as a way of correlating HTLCs which belong to the same payment when the `ChannelManager` sees an HTLC succeed/fail. This allows it to have awareness of the state of all HTLCs in a payment when it generates the ultimate user-facing payment success/failure events. This was used in the same PR to avoid generating duplicative success/failure events for a single payment. Because the field was only used as an internal token to correlate HTLCs, and retries were not supported, it was generated randomly by calling the `KeysInterface`'s 32-byte random-fetching function. This also provided a backwards-compatibility story as the existing HTLC randomization key was re-used for older clients. In 28eea12bbe0d78d256f79ec725cf02366dce4e36 `MppId` was renamed to the current `PaymentId` which was then used expose the `retry_payment` interface, allowing users to send new HTLCs which are considered a part of an existing payment. At no point has the payment-sending API seriously considered idempotency, a major drawback which leaves the API unsafe in most deployments. Luckily, there is a simple solution - because the `PaymentId` must be unique, and because payment information for a given payment is held for several blocks after a payment completes/fails, it represents an obvious idempotency token. Here we simply require the user provide the `PaymentId` directly in `send_payment`, allowing them to use whatever token they may already have for a payment's idempotency token.
2022-10-06 21:31:02 +00:00
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let mut update_add = update_0.update_add_htlcs[0].clone();
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
expect_pending_htlcs_forwardable_ignore!(nodes[1]);
nodes[1].node.process_pending_htlc_forwards();
expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
nodes[1].node.process_pending_htlc_forwards();
let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
check_added_monitors!(&nodes[1], 1);
assert!(update_1.update_fail_htlcs.len() == 1);
let fail_msg = update_1.update_fail_htlcs[0].clone();
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
// Ensure the payment fails with the expected error.
let mut error_data = recv_value_msat.to_be_bytes().to_vec();
error_data.extend_from_slice(
&nodes[0].node.best_block.read().unwrap().height().to_be_bytes(),
);
let mut fail_conditions = PaymentFailedConditions::new()
.blamed_scid(phantom_scid)
.expected_htlc_error_data(0x4000 | 15, &error_data);
expect_payment_failed_conditions(&nodes[0], payment_hash, true, fail_conditions);
}
#[test]
fn test_phantom_failure_modified_cltv() {
// Test that we fail back phantoms if the upstream node fiddled with the CLTV too much with the
// correct error code.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
// Get the route.
let recv_value_msat = 10_000;
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[1], Some(recv_value_msat));
let (mut route, phantom_scid) = get_phantom_route!(nodes, recv_value_msat, channel);
// Route the HTLC through to the destination.
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let mut update_add = update_0.update_add_htlcs[0].clone();
// Modify the route to have a too-low cltv.
update_add.cltv_expiry -= 10;
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
assert!(update_1.update_fail_htlcs.len() == 1);
let fail_msg = update_1.update_fail_htlcs[0].clone();
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
// Ensure the payment fails with the expected error.
let mut fail_conditions = PaymentFailedConditions::new()
.blamed_scid(phantom_scid)
.expected_htlc_error_data(0x2000 | 2, &[]);
expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions);
}
#[test]
fn test_phantom_failure_expires_too_soon() {
// Test that we fail back phantoms if the HTLC got delayed and we got blocks in between with
// the correct error code.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
// Get the route.
let recv_value_msat = 10_000;
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[1], Some(recv_value_msat));
let (mut route, phantom_scid) = get_phantom_route!(nodes, recv_value_msat, channel);
// Route the HTLC through to the destination.
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let mut update_add = update_0.update_add_htlcs[0].clone();
connect_blocks(&nodes[1], CLTV_FAR_FAR_AWAY);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
assert!(update_1.update_fail_htlcs.len() == 1);
let fail_msg = update_1.update_fail_htlcs[0].clone();
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
// Ensure the payment fails with the expected error.
let mut fail_conditions = PaymentFailedConditions::new()
.blamed_scid(phantom_scid)
.expected_htlc_error_data(0x2000 | 2, &[]);
expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions);
}
#[test]
fn test_phantom_failure_too_low_recv_amt() {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
// Get the route with a too-low amount.
let recv_amt_msat = 10_000;
let bad_recv_amt_msat = recv_amt_msat - 10;
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[1], Some(recv_amt_msat));
let (mut route, phantom_scid) = get_phantom_route!(nodes, bad_recv_amt_msat, channel);
// Route the HTLC through to the destination.
Allow users to specify the `PaymentId` for new outbound payments In c986e52ce83e9aeaa9447abebc5f6600470337cf, an `MppId` was added to `HTLCSource` objects as a way of correlating HTLCs which belong to the same payment when the `ChannelManager` sees an HTLC succeed/fail. This allows it to have awareness of the state of all HTLCs in a payment when it generates the ultimate user-facing payment success/failure events. This was used in the same PR to avoid generating duplicative success/failure events for a single payment. Because the field was only used as an internal token to correlate HTLCs, and retries were not supported, it was generated randomly by calling the `KeysInterface`'s 32-byte random-fetching function. This also provided a backwards-compatibility story as the existing HTLC randomization key was re-used for older clients. In 28eea12bbe0d78d256f79ec725cf02366dce4e36 `MppId` was renamed to the current `PaymentId` which was then used expose the `retry_payment` interface, allowing users to send new HTLCs which are considered a part of an existing payment. At no point has the payment-sending API seriously considered idempotency, a major drawback which leaves the API unsafe in most deployments. Luckily, there is a simple solution - because the `PaymentId` must be unique, and because payment information for a given payment is held for several blocks after a payment completes/fails, it represents an obvious idempotency token. Here we simply require the user provide the `PaymentId` directly in `send_payment`, allowing them to use whatever token they may already have for a payment's idempotency token.
2022-10-06 21:31:02 +00:00
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let mut update_add = update_0.update_add_htlcs[0].clone();
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
expect_pending_htlcs_forwardable_ignore!(nodes[1]);
nodes[1].node.process_pending_htlc_forwards();
expect_pending_htlcs_forwardable_ignore!(nodes[1]);
nodes[1].node.process_pending_htlc_forwards();
expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }]);
nodes[1].node.process_pending_htlc_forwards();
let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
check_added_monitors!(&nodes[1], 1);
assert!(update_1.update_fail_htlcs.len() == 1);
let fail_msg = update_1.update_fail_htlcs[0].clone();
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
// Ensure the payment fails with the expected error.
let mut error_data = bad_recv_amt_msat.to_be_bytes().to_vec();
error_data.extend_from_slice(&nodes[1].node.best_block.read().unwrap().height().to_be_bytes());
let mut fail_conditions = PaymentFailedConditions::new()
.blamed_scid(phantom_scid)
.expected_htlc_error_data(0x4000 | 15, &error_data);
expect_payment_failed_conditions(&nodes[0], payment_hash, true, fail_conditions);
}
#[test]
fn test_phantom_dust_exposure_failure() {
// Set the max dust exposure to the dust limit.
let max_dust_exposure = 546;
let mut receiver_config = UserConfig::default();
receiver_config.channel_config.max_dust_htlc_exposure_msat = max_dust_exposure;
receiver_config.channel_handshake_config.announced_channel = true;
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(receiver_config)]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
// Get the route with an amount exceeding the dust exposure threshold of nodes[1].
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[1], Some(max_dust_exposure + 1));
let (mut route, _) = get_phantom_route!(nodes, max_dust_exposure + 1, channel);
// Route the HTLC through to the destination.
Allow users to specify the `PaymentId` for new outbound payments In c986e52ce83e9aeaa9447abebc5f6600470337cf, an `MppId` was added to `HTLCSource` objects as a way of correlating HTLCs which belong to the same payment when the `ChannelManager` sees an HTLC succeed/fail. This allows it to have awareness of the state of all HTLCs in a payment when it generates the ultimate user-facing payment success/failure events. This was used in the same PR to avoid generating duplicative success/failure events for a single payment. Because the field was only used as an internal token to correlate HTLCs, and retries were not supported, it was generated randomly by calling the `KeysInterface`'s 32-byte random-fetching function. This also provided a backwards-compatibility story as the existing HTLC randomization key was re-used for older clients. In 28eea12bbe0d78d256f79ec725cf02366dce4e36 `MppId` was renamed to the current `PaymentId` which was then used expose the `retry_payment` interface, allowing users to send new HTLCs which are considered a part of an existing payment. At no point has the payment-sending API seriously considered idempotency, a major drawback which leaves the API unsafe in most deployments. Luckily, there is a simple solution - because the `PaymentId` must be unique, and because payment information for a given payment is held for several blocks after a payment completes/fails, it represents an obvious idempotency token. Here we simply require the user provide the `PaymentId` directly in `send_payment`, allowing them to use whatever token they may already have for a payment's idempotency token.
2022-10-06 21:31:02 +00:00
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let mut update_add = update_0.update_add_htlcs[0].clone();
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
assert!(update_1.update_fail_htlcs.len() == 1);
let fail_msg = update_1.update_fail_htlcs[0].clone();
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
// Ensure the payment fails with the expected error.
let mut err_data = Vec::new();
err_data.extend_from_slice(&(channel.1.serialized_length() as u16 + 2).to_be_bytes());
err_data.extend_from_slice(&ChannelUpdate::TYPE.to_be_bytes());
err_data.extend_from_slice(&channel.1.encode());
let mut fail_conditions = PaymentFailedConditions::new()
.blamed_scid(channel.0.contents.short_channel_id)
.blamed_chan_closed(false)
.expected_htlc_error_data(0x1000 | 7, &err_data);
expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions);
}
#[test]
fn test_phantom_failure_reject_payment() {
// Test that the user can successfully fail back a phantom node payment.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
// Get the route with a too-low amount.
let recv_amt_msat = 10_000;
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[1], Some(recv_amt_msat));
let (mut route, phantom_scid) = get_phantom_route!(nodes, recv_amt_msat, channel);
// Route the HTLC through to the destination.
Allow users to specify the `PaymentId` for new outbound payments In c986e52ce83e9aeaa9447abebc5f6600470337cf, an `MppId` was added to `HTLCSource` objects as a way of correlating HTLCs which belong to the same payment when the `ChannelManager` sees an HTLC succeed/fail. This allows it to have awareness of the state of all HTLCs in a payment when it generates the ultimate user-facing payment success/failure events. This was used in the same PR to avoid generating duplicative success/failure events for a single payment. Because the field was only used as an internal token to correlate HTLCs, and retries were not supported, it was generated randomly by calling the `KeysInterface`'s 32-byte random-fetching function. This also provided a backwards-compatibility story as the existing HTLC randomization key was re-used for older clients. In 28eea12bbe0d78d256f79ec725cf02366dce4e36 `MppId` was renamed to the current `PaymentId` which was then used expose the `retry_payment` interface, allowing users to send new HTLCs which are considered a part of an existing payment. At no point has the payment-sending API seriously considered idempotency, a major drawback which leaves the API unsafe in most deployments. Luckily, there is a simple solution - because the `PaymentId` must be unique, and because payment information for a given payment is held for several blocks after a payment completes/fails, it represents an obvious idempotency token. Here we simply require the user provide the `PaymentId` directly in `send_payment`, allowing them to use whatever token they may already have for a payment's idempotency token.
2022-10-06 21:31:02 +00:00
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let mut update_add = update_0.update_add_htlcs[0].clone();
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
expect_pending_htlcs_forwardable_ignore!(nodes[1]);
nodes[1].node.process_pending_htlc_forwards();
expect_pending_htlcs_forwardable_ignore!(nodes[1]);
nodes[1].node.process_pending_htlc_forwards();
expect_payment_claimable!(nodes[1], payment_hash, payment_secret, recv_amt_msat, None, route.paths[0].last().unwrap().pubkey);
nodes[1].node.fail_htlc_backwards(&payment_hash);
expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
nodes[1].node.process_pending_htlc_forwards();
let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
check_added_monitors!(&nodes[1], 1);
assert!(update_1.update_fail_htlcs.len() == 1);
let fail_msg = update_1.update_fail_htlcs[0].clone();
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
// Ensure the payment fails with the expected error.
let mut error_data = recv_amt_msat.to_be_bytes().to_vec();
error_data.extend_from_slice(&nodes[1].node.best_block.read().unwrap().height().to_be_bytes());
let mut fail_conditions = PaymentFailedConditions::new()
.blamed_scid(phantom_scid)
.expected_htlc_error_data(0x4000 | 15, &error_data);
expect_payment_failed_conditions(&nodes[0], payment_hash, true, fail_conditions);
}