rust-lightning/lightning/src/util/wakers.rs

345 lines
10 KiB
Rust
Raw Normal View History

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Utilities which allow users to block on some future notification from LDK. These are
//! specifically used by [`ChannelManager`] to allow waiting until the [`ChannelManager`] needs to
//! be re-persisted.
//!
//! [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
use alloc::sync::Arc;
use core::mem;
use sync::{Condvar, Mutex};
use prelude::*;
#[cfg(any(test, feature = "std"))]
use std::time::{Duration, Instant};
use core::future::Future as StdFuture;
use core::task::{Context, Poll};
use core::pin::Pin;
/// Used to signal to one of many waiters that the condition they're waiting on has happened.
pub(crate) struct Notifier {
notify_pending: Mutex<(bool, Option<Arc<Mutex<FutureState>>>)>,
condvar: Condvar,
}
impl Notifier {
pub(crate) fn new() -> Self {
Self {
notify_pending: Mutex::new((false, None)),
condvar: Condvar::new(),
}
}
pub(crate) fn wait(&self) {
loop {
let mut guard = self.notify_pending.lock().unwrap();
if guard.0 {
guard.0 = false;
return;
}
guard = self.condvar.wait(guard).unwrap();
let result = guard.0;
if result {
guard.0 = false;
return
}
}
}
#[cfg(any(test, feature = "std"))]
pub(crate) fn wait_timeout(&self, max_wait: Duration) -> bool {
let current_time = Instant::now();
loop {
let mut guard = self.notify_pending.lock().unwrap();
if guard.0 {
guard.0 = false;
return true;
}
guard = self.condvar.wait_timeout(guard, max_wait).unwrap().0;
// Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
// desired wait time has actually passed, and if not then restart the loop with a reduced wait
// time. Note that this logic can be highly simplified through the use of
// `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
// 1.42.0.
let elapsed = current_time.elapsed();
let result = guard.0;
if result || elapsed >= max_wait {
guard.0 = false;
return result;
}
match max_wait.checked_sub(elapsed) {
None => return result,
Some(_) => continue
}
}
}
/// Wake waiters, tracking that wake needs to occur even if there are currently no waiters.
pub(crate) fn notify(&self) {
let mut lock = self.notify_pending.lock().unwrap();
lock.0 = true;
if let Some(future_state) = lock.1.take() {
future_state.lock().unwrap().complete();
}
mem::drop(lock);
self.condvar.notify_all();
}
/// Gets a [`Future`] that will get woken up with any waiters
pub(crate) fn get_future(&self) -> Future {
let mut lock = self.notify_pending.lock().unwrap();
if lock.0 {
Future {
state: Arc::new(Mutex::new(FutureState {
callbacks: Vec::new(),
complete: false,
}))
}
} else if let Some(existing_state) = &lock.1 {
Future { state: Arc::clone(&existing_state) }
} else {
let state = Arc::new(Mutex::new(FutureState {
callbacks: Vec::new(),
complete: false,
}));
lock.1 = Some(Arc::clone(&state));
Future { state }
}
}
#[cfg(any(test, feature = "_test_utils"))]
pub fn notify_pending(&self) -> bool {
self.notify_pending.lock().unwrap().0
}
}
/// A callback which is called when a [`Future`] completes.
///
/// Note that this MUST NOT call back into LDK directly, it must instead schedule actions to be
/// taken later. Rust users should use the [`std::future::Future`] implementation for [`Future`]
/// instead.
///
/// Note that the [`std::future::Future`] implementation may only work for runtimes which schedule
/// futures when they receive a wake, rather than immediately executing them.
pub trait FutureCallback : Send {
/// The method which is called.
fn call(&self);
}
impl<F: Fn() + Send> FutureCallback for F {
fn call(&self) { (self)(); }
}
pub(crate) struct FutureState {
callbacks: Vec<Box<dyn FutureCallback>>,
complete: bool,
}
impl FutureState {
fn complete(&mut self) {
for callback in self.callbacks.drain(..) {
callback.call();
}
self.complete = true;
}
}
/// A simple future which can complete once, and calls some callback(s) when it does so.
pub struct Future {
state: Arc<Mutex<FutureState>>,
}
impl Future {
/// Registers a callback to be called upon completion of this future. If the future has already
/// completed, the callback will be called immediately.
///
/// (C-not exported) use the bindings-only `register_callback_fn` instead
pub fn register_callback(&self, callback: Box<dyn FutureCallback>) {
let mut state = self.state.lock().unwrap();
if state.complete {
mem::drop(state);
callback.call();
} else {
state.callbacks.push(callback);
}
}
// C bindings don't (currently) know how to map `Box<dyn Trait>`, and while it could add the
// following wrapper, doing it in the bindings is currently much more work than simply doing it
// here.
/// Registers a callback to be called upon completion of this future. If the future has already
/// completed, the callback will be called immediately.
#[cfg(c_bindings)]
pub fn register_callback_fn<F: 'static + FutureCallback>(&self, callback: F) {
self.register_callback(Box::new(callback));
}
}
mod std_future {
use core::task::Waker;
pub struct StdWaker(pub Waker);
impl super::FutureCallback for StdWaker {
fn call(&self) { self.0.wake_by_ref() }
}
}
/// (C-not exported) as Rust Futures aren't usable in language bindings.
impl<'a> StdFuture for Future {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.state.lock().unwrap();
if state.complete {
Poll::Ready(())
} else {
let waker = cx.waker().clone();
state.callbacks.push(Box::new(std_future::StdWaker(waker)));
Poll::Pending
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use core::sync::atomic::{AtomicBool, Ordering};
use core::future::Future as FutureTrait;
use core::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
#[cfg(feature = "std")]
#[test]
fn test_wait_timeout() {
use sync::Arc;
use std::thread;
let persistence_notifier = Arc::new(Notifier::new());
let thread_notifier = Arc::clone(&persistence_notifier);
let exit_thread = Arc::new(AtomicBool::new(false));
let exit_thread_clone = exit_thread.clone();
thread::spawn(move || {
loop {
let mut lock = thread_notifier.notify_pending.lock().unwrap();
lock.0 = true;
thread_notifier.condvar.notify_all();
if exit_thread_clone.load(Ordering::SeqCst) {
break
}
}
});
// Check that we can block indefinitely until updates are available.
let _ = persistence_notifier.wait();
// Check that the Notifier will return after the given duration if updates are
// available.
loop {
if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
break
}
}
exit_thread.store(true, Ordering::SeqCst);
// Check that the Notifier will return after the given duration even if no updates
// are available.
loop {
if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
break
}
}
}
#[test]
fn test_future_callbacks() {
let future = Future {
state: Arc::new(Mutex::new(FutureState {
callbacks: Vec::new(),
complete: false,
}))
};
let callback = Arc::new(AtomicBool::new(false));
let callback_ref = Arc::clone(&callback);
future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
assert!(!callback.load(Ordering::SeqCst));
future.state.lock().unwrap().complete();
assert!(callback.load(Ordering::SeqCst));
future.state.lock().unwrap().complete();
}
#[test]
fn test_pre_completed_future_callbacks() {
let future = Future {
state: Arc::new(Mutex::new(FutureState {
callbacks: Vec::new(),
complete: false,
}))
};
future.state.lock().unwrap().complete();
let callback = Arc::new(AtomicBool::new(false));
let callback_ref = Arc::clone(&callback);
future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
assert!(callback.load(Ordering::SeqCst));
assert!(future.state.lock().unwrap().callbacks.is_empty());
}
// Rather annoyingly, there's no safe way in Rust std to construct a Waker despite it being
// totally possible to construct from a trait implementation (though somewhat less effecient
// compared to a raw VTable). Instead, we have to write out a lot of boilerplate to build a
// waker, which we do here with a trivial Arc<AtomicBool> data element to track woke-ness.
const WAKER_V_TABLE: RawWakerVTable = RawWakerVTable::new(waker_clone, wake, wake_by_ref, drop);
unsafe fn wake_by_ref(ptr: *const ()) { let p = ptr as *const Arc<AtomicBool>; assert!(!(*p).fetch_or(true, Ordering::SeqCst)); }
unsafe fn drop(ptr: *const ()) { let p = ptr as *mut Arc<AtomicBool>; let _freed = Box::from_raw(p); }
unsafe fn wake(ptr: *const ()) { wake_by_ref(ptr); drop(ptr); }
unsafe fn waker_clone(ptr: *const ()) -> RawWaker {
let p = ptr as *const Arc<AtomicBool>;
RawWaker::new(Box::into_raw(Box::new(Arc::clone(&*p))) as *const (), &WAKER_V_TABLE)
}
fn create_waker() -> (Arc<AtomicBool>, Waker) {
let a = Arc::new(AtomicBool::new(false));
let waker = unsafe { Waker::from_raw(waker_clone((&a as *const Arc<AtomicBool>) as *const ())) };
(a, waker)
}
#[test]
fn test_future() {
let mut future = Future {
state: Arc::new(Mutex::new(FutureState {
callbacks: Vec::new(),
complete: false,
}))
};
let mut second_future = Future { state: Arc::clone(&future.state) };
let (woken, waker) = create_waker();
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
assert!(!woken.load(Ordering::SeqCst));
let (second_woken, second_waker) = create_waker();
assert_eq!(Pin::new(&mut second_future).poll(&mut Context::from_waker(&second_waker)), Poll::Pending);
assert!(!second_woken.load(Ordering::SeqCst));
future.state.lock().unwrap().complete();
assert!(woken.load(Ordering::SeqCst));
assert!(second_woken.load(Ordering::SeqCst));
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
assert_eq!(Pin::new(&mut second_future).poll(&mut Context::from_waker(&second_waker)), Poll::Ready(()));
}
}