rust-lightning/lightning/src/routing/gossip.rs

3143 lines
124 KiB
Rust
Raw Normal View History

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! The top-level network map tracking logic lives here.
use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
2022-05-05 17:59:38 +02:00
use bitcoin::secp256k1::PublicKey;
use bitcoin::secp256k1::Secp256k1;
use bitcoin::secp256k1;
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
use bitcoin::hashes::Hash;
use bitcoin::blockdata::transaction::TxOut;
use bitcoin::hash_types::BlockHash;
use chain;
use chain::Access;
use ln::chan_utils::make_funding_redeemscript;
use ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
use ln::msgs;
use util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
use util::logger::{Logger, Level};
use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
2021-08-01 18:22:06 +02:00
use io;
use io_extras::{copy, sink};
use prelude::*;
use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
use core::{cmp, fmt};
use sync::{RwLock, RwLockReadGuard};
use core::sync::atomic::{AtomicUsize, Ordering};
use sync::Mutex;
use core::ops::{Bound, Deref};
use bitcoin::hashes::hex::ToHex;
#[cfg(feature = "std")]
use std::time::{SystemTime, UNIX_EPOCH};
/// We remove stale channel directional info two weeks after the last update, per BOLT 7's
/// suggestion.
const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
/// The maximum number of extra bytes which we do not understand in a gossip message before we will
/// refuse to relay the message.
const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
/// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
/// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
const MAX_SCIDS_PER_REPLY: usize = 8000;
/// Represents the compressed public key of a node
#[derive(Clone, Copy)]
pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
impl NodeId {
/// Create a new NodeId from a public key
pub fn from_pubkey(pubkey: &PublicKey) -> Self {
NodeId(pubkey.serialize())
}
/// Get the public key slice from this NodeId
pub fn as_slice(&self) -> &[u8] {
&self.0
}
}
impl fmt::Debug for NodeId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "NodeId({})", log_bytes!(self.0))
}
}
impl core::hash::Hash for NodeId {
fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
self.0.hash(hasher);
}
}
impl Eq for NodeId {}
impl PartialEq for NodeId {
fn eq(&self, other: &Self) -> bool {
self.0[..] == other.0[..]
}
}
impl cmp::PartialOrd for NodeId {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for NodeId {
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.0[..].cmp(&other.0[..])
}
}
impl Writeable for NodeId {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
writer.write_all(&self.0)?;
Ok(())
}
}
impl Readable for NodeId {
fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
let mut buf = [0; PUBLIC_KEY_SIZE];
reader.read_exact(&mut buf)?;
Ok(Self(buf))
}
}
/// Represents the network as nodes and channels between them
pub struct NetworkGraph<L: Deref> where L::Target: Logger {
secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
genesis_hash: BlockHash,
logger: L,
// Lock order: channels -> nodes
channels: RwLock<BTreeMap<u64, ChannelInfo>>,
nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
}
/// A read-only view of [`NetworkGraph`].
pub struct ReadOnlyNetworkGraph<'a> {
channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
}
/// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
/// return packet by a node along the route. See [BOLT #4] for details.
///
2022-05-20 17:17:29 +02:00
/// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
#[derive(Clone, Debug, PartialEq)]
pub enum NetworkUpdate {
/// An error indicating a `channel_update` messages should be applied via
/// [`NetworkGraph::update_channel`].
ChannelUpdateMessage {
/// The update to apply via [`NetworkGraph::update_channel`].
msg: ChannelUpdate,
},
/// An error indicating that a channel failed to route a payment, which should be applied via
/// [`NetworkGraph::channel_failed`].
ChannelFailure {
/// The short channel id of the closed channel.
short_channel_id: u64,
/// Whether the channel should be permanently removed or temporarily disabled until a new
/// `channel_update` message is received.
is_permanent: bool,
},
/// An error indicating that a node failed to route a payment, which should be applied via
/// [`NetworkGraph::node_failed`].
NodeFailure {
/// The node id of the failed node.
node_id: PublicKey,
/// Whether the node should be permanently removed from consideration or can be restored
/// when a new `channel_update` message is received.
is_permanent: bool,
}
}
impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
(0, ChannelUpdateMessage) => {
(0, msg, required),
},
(2, ChannelFailure) => {
(0, short_channel_id, required),
(2, is_permanent, required),
},
(4, NodeFailure) => {
(0, node_id, required),
(2, is_permanent, required),
},
);
2020-05-06 19:04:44 -04:00
/// Receives and validates network updates from peers,
/// stores authentic and relevant data as a network graph.
/// This network graph is then used for routing payments.
/// Provides interface to help with initial routing sync by
/// serving historical announcements.
///
/// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
/// [`NetworkGraph`].
pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
where C::Target: chain::Access, L::Target: Logger
{
network_graph: G,
chain_access: Option<C>,
#[cfg(feature = "std")]
full_syncs_requested: AtomicUsize,
pending_events: Mutex<Vec<MessageSendEvent>>,
logger: L,
}
impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
where C::Target: chain::Access, L::Target: Logger
{
/// Creates a new tracker of the actual state of the network of channels and nodes,
/// assuming an existing Network Graph.
2020-05-06 19:04:44 -04:00
/// Chain monitor is used to make sure announced channels exist on-chain,
/// channel data is correct, and that the announcement is signed with
/// channel owners' keys.
pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
P2PGossipSync {
network_graph,
#[cfg(feature = "std")]
full_syncs_requested: AtomicUsize::new(0),
chain_access,
pending_events: Mutex::new(vec![]),
logger,
}
}
2020-08-10 13:50:29 +03:00
/// Adds a provider used to check new announcements. Does not affect
/// existing announcements unless they are updated.
/// Add, update or remove the provider would replace the current one.
pub fn add_chain_access(&mut self, chain_access: Option<C>) {
self.chain_access = chain_access;
}
/// Gets a reference to the underlying [`NetworkGraph`] which was provided in
/// [`P2PGossipSync::new`].
///
/// (C-not exported) as bindings don't support a reference-to-a-reference yet
pub fn network_graph(&self) -> &G {
&self.network_graph
}
#[cfg(feature = "std")]
/// Returns true when a full routing table sync should be performed with a peer.
fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
//TODO: Determine whether to request a full sync based on the network map.
const FULL_SYNCS_TO_REQUEST: usize = 5;
if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
true
} else {
false
}
}
}
impl<L: Deref> EventHandler for NetworkGraph<L> where L::Target: Logger {
fn handle_event(&self, event: &Event) {
if let Event::PaymentPathFailed { network_update, .. } = event {
if let Some(network_update) = network_update {
match *network_update {
NetworkUpdate::ChannelUpdateMessage { ref msg } => {
let short_channel_id = msg.contents.short_channel_id;
let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
let status = if is_enabled { "enabled" } else { "disabled" };
log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
let _ = self.update_channel(msg);
},
NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
let action = if is_permanent { "Removing" } else { "Disabling" };
log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
self.channel_failed(short_channel_id, is_permanent);
},
NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
let action = if is_permanent { "Removing" } else { "Disabling" };
log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
self.node_failed(node_id, is_permanent);
},
}
}
}
}
}
macro_rules! secp_verify_sig {
( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
2022-05-05 17:59:38 +02:00
match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
Ok(_) => {},
Err(_) => {
return Err(LightningError {
err: format!("Invalid signature on {} message", $msg_type),
action: ErrorAction::SendWarningMessage {
msg: msgs::WarningMessage {
channel_id: [0; 32],
data: format!("Invalid signature on {} message", $msg_type),
},
log_level: Level::Trace,
},
});
},
}
};
}
impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
where C::Target: chain::Access, L::Target: Logger
{
fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
self.network_graph.update_node_from_announcement(msg)?;
Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
}
fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
}
fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
self.network_graph.update_channel(msg)?;
Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
}
fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
let channels = self.network_graph.channels.read().unwrap();
for (_, ref chan) in channels.range(starting_point..) {
if chan.announcement_message.is_some() {
let chan_announcement = chan.announcement_message.clone().unwrap();
let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
if let Some(one_to_two) = chan.one_to_two.as_ref() {
one_to_two_announcement = one_to_two.last_update_message.clone();
}
if let Some(two_to_one) = chan.two_to_one.as_ref() {
two_to_one_announcement = two_to_one.last_update_message.clone();
}
return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
} else {
// TODO: We may end up sending un-announced channel_updates if we are sending
// initial sync data while receiving announce/updates for this channel.
}
}
None
}
fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
let nodes = self.network_graph.nodes.read().unwrap();
let iter = if let Some(pubkey) = starting_point {
nodes.range((Bound::Excluded(NodeId::from_pubkey(pubkey)), Bound::Unbounded))
} else {
nodes.range(..)
};
for (_, ref node) in iter {
if let Some(node_info) = node.announcement_info.as_ref() {
if let Some(msg) = node_info.announcement_message.clone() {
return Some(msg);
}
}
}
None
}
/// Initiates a stateless sync of routing gossip information with a peer
/// using gossip_queries. The default strategy used by this implementation
/// is to sync the full block range with several peers.
///
/// We should expect one or more reply_channel_range messages in response
/// to our query_channel_range. Each reply will enqueue a query_scid message
/// to request gossip messages for each channel. The sync is considered complete
/// when the final reply_scids_end message is received, though we are not
/// tracking this directly.
fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) -> Result<(), ()> {
// We will only perform a sync with peers that support gossip_queries.
if !init_msg.features.supports_gossip_queries() {
// Don't disconnect peers for not supporting gossip queries. We may wish to have
// channels with peers even without being able to exchange gossip.
return Ok(());
}
// The lightning network's gossip sync system is completely broken in numerous ways.
//
// Given no broadly-available set-reconciliation protocol, the only reasonable approach is
// to do a full sync from the first few peers we connect to, and then receive gossip
// updates from all our peers normally.
//
// Originally, we could simply tell a peer to dump us the entire gossip table on startup,
// wasting lots of bandwidth but ensuring we have the full network graph. After the initial
// dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
// seen.
//
// In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
// to ask for the SCIDs of all channels in your peer's routing graph, and then only request
// channel data which you are missing. Except there was no way at all to identify which
// `channel_update`s you were missing, so you still had to request everything, just in a
// very complicated way with some queries instead of just getting the dump.
//
// Later, an option was added to fetch the latest timestamps of the `channel_update`s to
// make efficient sync possible, however it has yet to be implemented in lnd, which makes
// relying on it useless.
//
// After gossip queries were introduced, support for receiving a full gossip table dump on
// connection was removed from several nodes, making it impossible to get a full sync
// without using the "gossip queries" messages.
//
// Once you opt into "gossip queries" the only way to receive any gossip updates that a
// peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
// message, as the name implies, tells the peer to not forward any gossip messages with a
// timestamp older than a given value (not the time the peer received the filter, but the
// timestamp in the update message, which is often hours behind when the peer received the
// message).
//
// Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
// your peer to send you the full routing graph (subject to the filter). Thus, in order to
// tell a peer to send you any updates as it sees them, you have to also ask for the full
// routing graph to be synced. If you set a timestamp filter near the current time, peers
// will simply not forward any new updates they see to you which were generated some time
// ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
// ago), you will always get the full routing graph from all your peers.
//
// Most lightning nodes today opt to simply turn off receiving gossip data which only
// propagated some time after it was generated, and, worse, often disable gossiping with
// several peers after their first connection. The second behavior can cause gossip to not
// propagate fully if there are cuts in the gossiping subgraph.
//
// In an attempt to cut a middle ground between always fetching the full graph from all of
// our peers and never receiving gossip from peers at all, we send all of our peers a
// `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
//
// For no-std builds, we bury our head in the sand and do a full sync on each connection.
#[allow(unused_mut, unused_assignments)]
let mut gossip_start_time = 0;
#[cfg(feature = "std")]
{
gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
if self.should_request_full_sync(&their_node_id) {
gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
} else {
gossip_start_time -= 60 * 60; // an hour ago
}
}
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
node_id: their_node_id.clone(),
msg: GossipTimestampFilter {
chain_hash: self.network_graph.genesis_hash,
first_timestamp: gossip_start_time as u32, // 2106 issue!
timestamp_range: u32::max_value(),
},
});
Ok(())
}
fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
// We don't make queries, so should never receive replies. If, in the future, the set
// reconciliation extensions to gossip queries become broadly supported, we should revert
// this code to its state pre-0.0.106.
Ok(())
}
fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
// We don't make queries, so should never receive replies. If, in the future, the set
// reconciliation extensions to gossip queries become broadly supported, we should revert
// this code to its state pre-0.0.106.
Ok(())
}
/// Processes a query from a peer by finding announced/public channels whose funding UTXOs
/// are in the specified block range. Due to message size limits, large range
/// queries may result in several reply messages. This implementation enqueues
/// all reply messages into pending events. Each message will allocate just under 65KiB. A full
/// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
/// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
/// memory constrained systems.
fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
// We might receive valid queries with end_blocknum that would overflow SCID conversion.
// If so, we manually cap the ending block to avoid this overflow.
let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
// Per spec, we must reply to a query. Send an empty message when things are invalid.
if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(MessageSendEvent::SendReplyChannelRange {
node_id: their_node_id.clone(),
msg: ReplyChannelRange {
chain_hash: msg.chain_hash.clone(),
first_blocknum: msg.first_blocknum,
number_of_blocks: msg.number_of_blocks,
sync_complete: true,
short_channel_ids: vec![],
}
});
return Err(LightningError {
err: String::from("query_channel_range could not be processed"),
action: ErrorAction::IgnoreError,
});
}
// Creates channel batches. We are not checking if the channel is routable
// (has at least one update). A peer may still want to know the channel
// exists even if its not yet routable.
let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
let channels = self.network_graph.channels.read().unwrap();
for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
if let Some(chan_announcement) = &chan.announcement_message {
// Construct a new batch if last one is full
if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
}
let batch = batches.last_mut().unwrap();
batch.push(chan_announcement.contents.short_channel_id);
}
}
drop(channels);
let mut pending_events = self.pending_events.lock().unwrap();
let batch_count = batches.len();
let mut prev_batch_endblock = msg.first_blocknum;
for (batch_index, batch) in batches.into_iter().enumerate() {
// Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
// and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
//
// Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
// reply is >= the previous reply's `first_blocknum` and either exactly the previous
// reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
// significant diversion from the requirements set by the spec, and, in case of blocks
// with no channel opens (e.g. empty blocks), requires that we use the previous value
// and *not* derive the first_blocknum from the actual first block of the reply.
let first_blocknum = prev_batch_endblock;
// Each message carries the number of blocks (from the `first_blocknum`) its contents
// fit in. Though there is no requirement that we use exactly the number of blocks its
// contents are from, except for the bogus requirements c-lightning enforces, above.
//
// Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
// >= the query's end block. Thus, for the last reply, we calculate the difference
// between the query's end block and the start of the reply.
//
// Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
// first_blocknum will be either msg.first_blocknum or a higher block height.
let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
(true, msg.end_blocknum() - first_blocknum)
}
// Prior replies should use the number of blocks that fit into the reply. Overflow
// safe since first_blocknum is always <= last SCID's block.
else {
(false, block_from_scid(batch.last().unwrap()) - first_blocknum)
};
prev_batch_endblock = first_blocknum + number_of_blocks;
pending_events.push(MessageSendEvent::SendReplyChannelRange {
node_id: their_node_id.clone(),
msg: ReplyChannelRange {
chain_hash: msg.chain_hash.clone(),
first_blocknum,
number_of_blocks,
sync_complete,
short_channel_ids: batch,
}
});
}
Ok(())
}
fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
// TODO
Err(LightningError {
err: String::from("Not implemented"),
action: ErrorAction::IgnoreError,
})
}
fn provided_node_features(&self) -> NodeFeatures {
let mut features = NodeFeatures::empty();
features.set_gossip_queries_optional();
features
}
fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
let mut features = InitFeatures::empty();
features.set_gossip_queries_optional();
features
}
}
impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
where
C::Target: chain::Access,
L::Target: Logger,
{
fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
let mut ret = Vec::new();
let mut pending_events = self.pending_events.lock().unwrap();
core::mem::swap(&mut ret, &mut pending_events);
ret
}
}
#[derive(Clone, Debug, PartialEq)]
/// Details about one direction of a channel as received within a [`ChannelUpdate`].
pub struct ChannelUpdateInfo {
2020-05-06 19:04:44 -04:00
/// When the last update to the channel direction was issued.
/// Value is opaque, as set in the announcement.
pub last_update: u32,
2020-05-06 19:04:44 -04:00
/// Whether the channel can be currently used for payments (in this one direction).
pub enabled: bool,
2020-05-06 19:04:44 -04:00
/// The difference in CLTV values that you must have when routing through this channel.
pub cltv_expiry_delta: u16,
/// The minimum value, which must be relayed to the next hop via the channel
pub htlc_minimum_msat: u64,
2020-06-28 14:43:10 +03:00
/// The maximum value which may be relayed to the next hop via the channel.
pub htlc_maximum_msat: u64,
/// Fees charged when the channel is used for routing
pub fees: RoutingFees,
/// Most recent update for the channel received from the network
/// Mostly redundant with the data we store in fields explicitly.
/// Everything else is useful only for sending out for initial routing sync.
/// Not stored if contains excess data to prevent DoS.
pub last_update_message: Option<ChannelUpdate>,
}
impl fmt::Display for ChannelUpdateInfo {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
2020-05-03 16:06:59 -04:00
write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
Ok(())
}
}
impl Writeable for ChannelUpdateInfo {
fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
write_tlv_fields!(writer, {
(0, self.last_update, required),
(2, self.enabled, required),
(4, self.cltv_expiry_delta, required),
(6, self.htlc_minimum_msat, required),
// Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
// compatibility with LDK versions prior to v0.0.110.
(8, Some(self.htlc_maximum_msat), required),
(10, self.fees, required),
(12, self.last_update_message, required),
});
Ok(())
}
}
impl Readable for ChannelUpdateInfo {
fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
init_tlv_field_var!(last_update, required);
init_tlv_field_var!(enabled, required);
init_tlv_field_var!(cltv_expiry_delta, required);
init_tlv_field_var!(htlc_minimum_msat, required);
init_tlv_field_var!(htlc_maximum_msat, option);
init_tlv_field_var!(fees, required);
init_tlv_field_var!(last_update_message, required);
read_tlv_fields!(reader, {
(0, last_update, required),
(2, enabled, required),
(4, cltv_expiry_delta, required),
(6, htlc_minimum_msat, required),
(8, htlc_maximum_msat, required),
(10, fees, required),
(12, last_update_message, required)
});
if let Some(htlc_maximum_msat) = htlc_maximum_msat {
Ok(ChannelUpdateInfo {
last_update: init_tlv_based_struct_field!(last_update, required),
enabled: init_tlv_based_struct_field!(enabled, required),
cltv_expiry_delta: init_tlv_based_struct_field!(cltv_expiry_delta, required),
htlc_minimum_msat: init_tlv_based_struct_field!(htlc_minimum_msat, required),
htlc_maximum_msat,
fees: init_tlv_based_struct_field!(fees, required),
last_update_message: init_tlv_based_struct_field!(last_update_message, required),
})
} else {
Err(DecodeError::InvalidValue)
}
}
}
#[derive(Clone, Debug, PartialEq)]
2020-05-06 19:04:44 -04:00
/// Details about a channel (both directions).
/// Received within a channel announcement.
pub struct ChannelInfo {
/// Protocol features of a channel communicated during its announcement
pub features: ChannelFeatures,
2020-05-03 16:06:59 -04:00
/// Source node of the first direction of a channel
pub node_one: NodeId,
2020-05-03 16:06:59 -04:00
/// Details about the first direction of a channel
pub one_to_two: Option<ChannelUpdateInfo>,
2020-05-03 16:06:59 -04:00
/// Source node of the second direction of a channel
pub node_two: NodeId,
2020-05-03 16:06:59 -04:00
/// Details about the second direction of a channel
pub two_to_one: Option<ChannelUpdateInfo>,
2020-06-28 15:18:33 +03:00
/// The channel capacity as seen on-chain, if chain lookup is available.
pub capacity_sats: Option<u64>,
/// An initial announcement of the channel
2020-05-06 19:04:44 -04:00
/// Mostly redundant with the data we store in fields explicitly.
/// Everything else is useful only for sending out for initial routing sync.
/// Not stored if contains excess data to prevent DoS.
pub announcement_message: Option<ChannelAnnouncement>,
/// The timestamp when we received the announcement, if we are running with feature = "std"
/// (which we can probably assume we are - no-std environments probably won't have a full
/// network graph in memory!).
announcement_received_time: u64,
}
impl ChannelInfo {
/// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
/// returned `source`, or `None` if `target` is not one of the channel's counterparties.
pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
let (direction, source) = {
if target == &self.node_one {
(self.two_to_one.as_ref(), &self.node_two)
} else if target == &self.node_two {
(self.one_to_two.as_ref(), &self.node_one)
} else {
return None;
}
};
Some((DirectedChannelInfo::new(self, direction), source))
}
/// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
/// returned `target`, or `None` if `source` is not one of the channel's counterparties.
pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
let (direction, target) = {
if source == &self.node_one {
(self.one_to_two.as_ref(), &self.node_two)
} else if source == &self.node_two {
(self.two_to_one.as_ref(), &self.node_one)
} else {
return None;
}
};
Some((DirectedChannelInfo::new(self, direction), target))
}
/// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
let direction = channel_flags & 1u8;
if direction == 0 {
self.one_to_two.as_ref()
} else {
self.two_to_one.as_ref()
}
}
}
impl fmt::Display for ChannelInfo {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
2020-05-03 16:06:59 -04:00
write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
Ok(())
}
}
impl Writeable for ChannelInfo {
fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
write_tlv_fields!(writer, {
(0, self.features, required),
(1, self.announcement_received_time, (default_value, 0)),
(2, self.node_one, required),
(4, self.one_to_two, required),
(6, self.node_two, required),
(8, self.two_to_one, required),
(10, self.capacity_sats, required),
(12, self.announcement_message, required),
});
Ok(())
}
}
// A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
// necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
// that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
// the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
// channel updates via the gossip network.
struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
match ::util::ser::Readable::read(reader) {
Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
Err(DecodeError::ShortRead) => Ok(None),
Err(DecodeError::InvalidValue) => Ok(None),
Err(err) => Err(err),
}
}
}
impl Readable for ChannelInfo {
fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
init_tlv_field_var!(features, required);
init_tlv_field_var!(announcement_received_time, (default_value, 0));
init_tlv_field_var!(node_one, required);
let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
init_tlv_field_var!(node_two, required);
let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
init_tlv_field_var!(capacity_sats, required);
init_tlv_field_var!(announcement_message, required);
read_tlv_fields!(reader, {
(0, features, required),
(1, announcement_received_time, (default_value, 0)),
(2, node_one, required),
(4, one_to_two_wrap, ignorable),
(6, node_two, required),
(8, two_to_one_wrap, ignorable),
(10, capacity_sats, required),
(12, announcement_message, required),
});
Ok(ChannelInfo {
features: init_tlv_based_struct_field!(features, required),
node_one: init_tlv_based_struct_field!(node_one, required),
one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
node_two: init_tlv_based_struct_field!(node_two, required),
two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
capacity_sats: init_tlv_based_struct_field!(capacity_sats, required),
announcement_message: init_tlv_based_struct_field!(announcement_message, required),
announcement_received_time: init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
})
}
}
/// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
/// source node to a target node.
#[derive(Clone)]
pub struct DirectedChannelInfo<'a> {
channel: &'a ChannelInfo,
direction: Option<&'a ChannelUpdateInfo>,
htlc_maximum_msat: u64,
effective_capacity: EffectiveCapacity,
}
impl<'a> DirectedChannelInfo<'a> {
#[inline]
fn new(channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>) -> Self {
let htlc_maximum_msat = direction.map(|direction| direction.htlc_maximum_msat);
let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
let (htlc_maximum_msat, effective_capacity) = match (htlc_maximum_msat, capacity_msat) {
(Some(amount_msat), Some(capacity_msat)) => {
let htlc_maximum_msat = cmp::min(amount_msat, capacity_msat);
(htlc_maximum_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: Some(htlc_maximum_msat) })
},
(Some(amount_msat), None) => {
(amount_msat, EffectiveCapacity::MaximumHTLC { amount_msat })
},
(None, Some(capacity_msat)) => {
(capacity_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: None })
},
(None, None) => (EffectiveCapacity::Unknown.as_msat(), EffectiveCapacity::Unknown),
};
Self {
channel, direction, htlc_maximum_msat, effective_capacity
}
}
/// Returns information for the channel.
pub fn channel(&self) -> &'a ChannelInfo { self.channel }
/// Returns information for the direction.
pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
/// Returns the maximum HTLC amount allowed over the channel in the direction.
pub fn htlc_maximum_msat(&self) -> u64 {
self.htlc_maximum_msat
}
/// Returns the [`EffectiveCapacity`] of the channel in the direction.
///
/// This is either the total capacity from the funding transaction, if known, or the
/// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
/// otherwise.
pub fn effective_capacity(&self) -> EffectiveCapacity {
self.effective_capacity
}
/// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
match self.direction {
Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
None => None,
}
}
}
impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
f.debug_struct("DirectedChannelInfo")
.field("channel", &self.channel)
.finish()
}
}
/// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
#[derive(Clone)]
pub(super) struct DirectedChannelInfoWithUpdate<'a> {
inner: DirectedChannelInfo<'a>,
}
impl<'a> DirectedChannelInfoWithUpdate<'a> {
/// Returns information for the channel.
#[inline]
pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
/// Returns information for the direction.
#[inline]
pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
/// Returns the [`EffectiveCapacity`] of the channel in the direction.
#[inline]
pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
}
impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
self.inner.fmt(f)
}
}
/// The effective capacity of a channel for routing purposes.
///
/// While this may be smaller than the actual channel capacity, amounts greater than
/// [`Self::as_msat`] should not be routed through the channel.
#[derive(Clone, Copy, Debug)]
pub enum EffectiveCapacity {
/// The available liquidity in the channel known from being a channel counterparty, and thus a
/// direct hop.
ExactLiquidity {
/// Either the inbound or outbound liquidity depending on the direction, denominated in
/// millisatoshi.
liquidity_msat: u64,
},
/// The maximum HTLC amount in one direction as advertised on the gossip network.
MaximumHTLC {
/// The maximum HTLC amount denominated in millisatoshi.
amount_msat: u64,
},
/// The total capacity of the channel as determined by the funding transaction.
Total {
/// The funding amount denominated in millisatoshi.
capacity_msat: u64,
/// The maximum HTLC amount denominated in millisatoshi.
htlc_maximum_msat: Option<u64>
},
/// A capacity sufficient to route any payment, typically used for private channels provided by
/// an invoice.
Infinite,
/// A capacity that is unknown possibly because either the chain state is unavailable to know
/// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
Unknown,
}
/// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
/// use when making routing decisions.
pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
impl EffectiveCapacity {
/// Returns the effective capacity denominated in millisatoshi.
pub fn as_msat(&self) -> u64 {
match self {
EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
EffectiveCapacity::Infinite => u64::max_value(),
EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
}
}
}
/// Fees for routing via a given channel or a node
#[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
pub struct RoutingFees {
2020-05-06 19:04:44 -04:00
/// Flat routing fee in satoshis
pub base_msat: u32,
2020-05-06 19:04:44 -04:00
/// Liquidity-based routing fee in millionths of a routed amount.
/// In other words, 10000 is 1%.
pub proportional_millionths: u32,
}
impl_writeable_tlv_based!(RoutingFees, {
(0, base_msat, required),
(2, proportional_millionths, required)
});
#[derive(Clone, Debug, PartialEq)]
/// Information received in the latest node_announcement from this node.
pub struct NodeAnnouncementInfo {
/// Protocol features the node announced support for
2020-05-11 21:12:23 -04:00
pub features: NodeFeatures,
2020-05-06 19:04:44 -04:00
/// When the last known update to the node state was issued.
/// Value is opaque, as set in the announcement.
2020-05-11 21:12:23 -04:00
pub last_update: u32,
/// Color assigned to the node
pub rgb: [u8; 3],
2020-05-06 19:04:44 -04:00
/// Moniker assigned to the node.
/// May be invalid or malicious (eg control chars),
/// should not be exposed to the user.
pub alias: NodeAlias,
/// Internet-level addresses via which one can connect to the node
pub addresses: Vec<NetAddress>,
/// An initial announcement of the node
2020-05-06 19:04:44 -04:00
/// Mostly redundant with the data we store in fields explicitly.
/// Everything else is useful only for sending out for initial routing sync.
/// Not stored if contains excess data to prevent DoS.
pub announcement_message: Option<NodeAnnouncement>
}
impl_writeable_tlv_based!(NodeAnnouncementInfo, {
(0, features, required),
(2, last_update, required),
(4, rgb, required),
(6, alias, required),
(8, announcement_message, option),
(10, addresses, vec_type),
});
/// A user-defined name for a node, which may be used when displaying the node in a graph.
///
/// Since node aliases are provided by third parties, they are a potential avenue for injection
/// attacks. Care must be taken when processing.
#[derive(Clone, Debug, PartialEq)]
pub struct NodeAlias(pub [u8; 32]);
impl fmt::Display for NodeAlias {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
let control_symbol = core::char::REPLACEMENT_CHARACTER;
let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
let bytes = self.0.split_at(first_null).0;
match core::str::from_utf8(bytes) {
Ok(alias) => {
for c in alias.chars() {
let mut bytes = [0u8; 4];
let c = if !c.is_control() { c } else { control_symbol };
f.write_str(c.encode_utf8(&mut bytes))?;
}
},
Err(_) => {
for c in bytes.iter().map(|b| *b as char) {
// Display printable ASCII characters
let mut bytes = [0u8; 4];
let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
f.write_str(c.encode_utf8(&mut bytes))?;
}
},
};
Ok(())
}
}
impl Writeable for NodeAlias {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
self.0.write(w)
}
}
impl Readable for NodeAlias {
fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
Ok(NodeAlias(Readable::read(r)?))
}
}
#[derive(Clone, Debug, PartialEq)]
2020-05-06 19:04:44 -04:00
/// Details about a node in the network, known from the network announcement.
pub struct NodeInfo {
/// All valid channels a node has announced
pub channels: Vec<u64>,
/// Lowest fees enabling routing via any of the enabled, known channels to a node.
/// The two fields (flat and proportional fee) are independent,
2020-05-06 19:04:44 -04:00
/// meaning they don't have to refer to the same channel.
pub lowest_inbound_channel_fees: Option<RoutingFees>,
2020-05-06 19:04:44 -04:00
/// More information about a node from node_announcement.
/// Optional because we store a Node entry after learning about it from
/// a channel announcement, but before receiving a node announcement.
pub announcement_info: Option<NodeAnnouncementInfo>
}
impl fmt::Display for NodeInfo {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
Ok(())
}
}
impl Writeable for NodeInfo {
fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
write_tlv_fields!(writer, {
(0, self.lowest_inbound_channel_fees, option),
(2, self.announcement_info, option),
(4, self.channels, vec_type),
});
Ok(())
}
}
// A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
// necessary to maintain compatibility with previous serializations of `NetAddress` that have an
// invalid hostname set. We ignore and eat all errors until we are either able to read a
// `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
match ::util::ser::Readable::read(reader) {
Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
Err(_) => {
copy(reader, &mut sink()).unwrap();
return Ok(None)
},
};
}
}
impl Readable for NodeInfo {
fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
init_tlv_field_var!(lowest_inbound_channel_fees, option);
let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
init_tlv_field_var!(channels, vec_type);
read_tlv_fields!(reader, {
(0, lowest_inbound_channel_fees, option),
(2, announcement_info_wrap, ignorable),
(4, channels, vec_type),
});
Ok(NodeInfo {
lowest_inbound_channel_fees: init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
announcement_info: announcement_info_wrap.map(|w| w.0),
channels: init_tlv_based_struct_field!(channels, vec_type),
})
}
}
const SERIALIZATION_VERSION: u8 = 1;
const MIN_SERIALIZATION_VERSION: u8 = 1;
impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
2021-08-01 18:22:06 +02:00
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
self.genesis_hash.write(writer)?;
let channels = self.channels.read().unwrap();
(channels.len() as u64).write(writer)?;
for (ref chan_id, ref chan_info) in channels.iter() {
(*chan_id).write(writer)?;
chan_info.write(writer)?;
}
let nodes = self.nodes.read().unwrap();
(nodes.len() as u64).write(writer)?;
for (ref node_id, ref node_info) in nodes.iter() {
node_id.write(writer)?;
node_info.write(writer)?;
}
let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
write_tlv_fields!(writer, {
(1, last_rapid_gossip_sync_timestamp, option),
});
Ok(())
}
}
impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
let genesis_hash: BlockHash = Readable::read(reader)?;
let channels_count: u64 = Readable::read(reader)?;
let mut channels = BTreeMap::new();
for _ in 0..channels_count {
let chan_id: u64 = Readable::read(reader)?;
let chan_info = Readable::read(reader)?;
channels.insert(chan_id, chan_info);
}
let nodes_count: u64 = Readable::read(reader)?;
let mut nodes = BTreeMap::new();
for _ in 0..nodes_count {
let node_id = Readable::read(reader)?;
let node_info = Readable::read(reader)?;
nodes.insert(node_id, node_info);
}
let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
read_tlv_fields!(reader, {
(1, last_rapid_gossip_sync_timestamp, option),
});
Ok(NetworkGraph {
secp_ctx: Secp256k1::verification_only(),
genesis_hash,
logger,
channels: RwLock::new(channels),
nodes: RwLock::new(nodes),
last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
})
}
}
impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
writeln!(f, "Network map\n[Channels]")?;
for (key, val) in self.channels.read().unwrap().iter() {
writeln!(f, " {}: {}", key, val)?;
}
writeln!(f, "[Nodes]")?;
for (&node_id, val) in self.nodes.read().unwrap().iter() {
writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
}
Ok(())
}
}
impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
fn eq(&self, other: &Self) -> bool {
self.genesis_hash == other.genesis_hash &&
*self.channels.read().unwrap() == *other.channels.read().unwrap() &&
*self.nodes.read().unwrap() == *other.nodes.read().unwrap()
}
}
impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
/// Creates a new, empty, network graph.
pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
Self {
secp_ctx: Secp256k1::verification_only(),
genesis_hash,
logger,
channels: RwLock::new(BTreeMap::new()),
nodes: RwLock::new(BTreeMap::new()),
last_rapid_gossip_sync_timestamp: Mutex::new(None),
}
}
/// Returns a read-only view of the network graph.
pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
let channels = self.channels.read().unwrap();
let nodes = self.nodes.read().unwrap();
ReadOnlyNetworkGraph {
channels,
nodes,
}
}
/// The unix timestamp provided by the most recent rapid gossip sync.
/// It will be set by the rapid sync process after every sync completion.
pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
}
/// Update the unix timestamp provided by the most recent rapid gossip sync.
/// This should be done automatically by the rapid sync process after every sync completion.
pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
}
/// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
/// purposes.
#[cfg(test)]
pub fn clear_nodes_announcement_info(&self) {
for node in self.nodes.write().unwrap().iter_mut() {
node.1.announcement_info = None;
}
}
/// For an already known node (from channel announcements), update its stored properties from a
/// given node announcement.
///
/// You probably don't want to call this directly, instead relying on a P2PGossipSync's
/// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
/// routing messages from a source using a protocol other than the lightning P2P protocol.
pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
}
/// For an already known node (from channel announcements), update its stored properties from a
/// given node announcement without verifying the associated signatures. Because we aren't
/// given the associated signatures here we cannot relay the node announcement to any of our
/// peers.
pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
self.update_node_from_announcement_intern(msg, None)
}
fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
Some(node) => {
if let Some(node_info) = node.announcement_info.as_ref() {
// The timestamp field is somewhat of a misnomer - the BOLTs use it to order
// updates to ensure you always have the latest one, only vaguely suggesting
// that it be at least the current time.
if node_info.last_update > msg.timestamp {
return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
} else if node_info.last_update == msg.timestamp {
return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
}
}
let should_relay =
msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
node.announcement_info = Some(NodeAnnouncementInfo {
features: msg.features.clone(),
last_update: msg.timestamp,
rgb: msg.rgb,
alias: NodeAlias(msg.alias),
addresses: msg.addresses.clone(),
announcement_message: if should_relay { full_msg.cloned() } else { None },
});
Ok(())
}
}
}
/// Store or update channel info from a channel announcement.
///
/// You probably don't want to call this directly, instead relying on a P2PGossipSync's
/// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
/// routing messages from a source using a protocol other than the lightning P2P protocol.
///
/// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
/// the corresponding UTXO exists on chain and is correctly-formatted.
pub fn update_channel_from_announcement<C: Deref>(
&self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
) -> Result<(), LightningError>
where
C::Target: chain::Access,
{
let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
}
/// Store or update channel info from a channel announcement without verifying the associated
/// signatures. Because we aren't given the associated signatures here we cannot relay the
/// channel announcement to any of our peers.
///
/// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
/// the corresponding UTXO exists on chain and is correctly-formatted.
pub fn update_channel_from_unsigned_announcement<C: Deref>(
&self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
) -> Result<(), LightningError>
where
C::Target: chain::Access,
{
self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
}
/// Update channel from partial announcement data received via rapid gossip sync
///
/// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
/// rapid gossip sync server)
///
/// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
if node_id_1 == node_id_2 {
return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
};
let node_1 = NodeId::from_pubkey(&node_id_1);
let node_2 = NodeId::from_pubkey(&node_id_2);
let channel_info = ChannelInfo {
features,
node_one: node_1.clone(),
one_to_two: None,
node_two: node_2.clone(),
two_to_one: None,
capacity_sats: None,
announcement_message: None,
announcement_received_time: timestamp,
};
self.add_channel_between_nodes(short_channel_id, channel_info, None)
}
fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
let mut channels = self.channels.write().unwrap();
let mut nodes = self.nodes.write().unwrap();
let node_id_a = channel_info.node_one.clone();
let node_id_b = channel_info.node_two.clone();
match channels.entry(short_channel_id) {
BtreeEntry::Occupied(mut entry) => {
//TODO: because asking the blockchain if short_channel_id is valid is only optional
//in the blockchain API, we need to handle it smartly here, though it's unclear
//exactly how...
if utxo_value.is_some() {
// Either our UTXO provider is busted, there was a reorg, or the UTXO provider
// only sometimes returns results. In any case remove the previous entry. Note
// that the spec expects us to "blacklist" the node_ids involved, but we can't
// do that because
// a) we don't *require* a UTXO provider that always returns results.
// b) we don't track UTXOs of channels we know about and remove them if they
// get reorg'd out.
// c) it's unclear how to do so without exposing ourselves to massive DoS risk.
Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
*entry.get_mut() = channel_info;
} else {
return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
}
},
BtreeEntry::Vacant(entry) => {
entry.insert(channel_info);
}
};
for current_node_id in [node_id_a, node_id_b].iter() {
match nodes.entry(current_node_id.clone()) {
BtreeEntry::Occupied(node_entry) => {
node_entry.into_mut().channels.push(short_channel_id);
},
BtreeEntry::Vacant(node_entry) => {
node_entry.insert(NodeInfo {
channels: vec!(short_channel_id),
lowest_inbound_channel_fees: None,
announcement_info: None,
});
}
};
};
Ok(())
}
fn update_channel_from_unsigned_announcement_intern<C: Deref>(
&self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
) -> Result<(), LightningError>
where
C::Target: chain::Access,
{
if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
}
{
let channels = self.channels.read().unwrap();
if let Some(chan) = channels.get(&msg.short_channel_id) {
if chan.capacity_sats.is_some() {
// If we'd previously looked up the channel on-chain and checked the script
// against what appears on-chain, ignore the duplicate announcement.
//
// Because a reorg could replace one channel with another at the same SCID, if
// the channel appears to be different, we re-validate. This doesn't expose us
// to any more DoS risk than not, as a peer can always flood us with
// randomly-generated SCID values anyway.
//
// We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
// as we didn't (necessarily) store the bitcoin keys, and we only really care
// if the peers on the channel changed anyway.
if NodeId::from_pubkey(&msg.node_id_1) == chan.node_one && NodeId::from_pubkey(&msg.node_id_2) == chan.node_two {
return Err(LightningError {
err: "Already have chain-validated channel".to_owned(),
action: ErrorAction::IgnoreDuplicateGossip
});
}
} else if chain_access.is_none() {
// Similarly, if we can't check the chain right now anyway, ignore the
// duplicate announcement without bothering to take the channels write lock.
return Err(LightningError {
err: "Already have non-chain-validated channel".to_owned(),
action: ErrorAction::IgnoreDuplicateGossip
});
}
}
}
let utxo_value = match &chain_access {
&None => {
// Tentatively accept, potentially exposing us to DoS attacks
None
},
&Some(ref chain_access) => {
match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
Ok(TxOut { value, script_pubkey }) => {
let expected_script =
make_funding_redeemscript(&msg.bitcoin_key_1, &msg.bitcoin_key_2).to_v0_p2wsh();
if script_pubkey != expected_script {
return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", expected_script.to_hex(), script_pubkey.to_hex()), action: ErrorAction::IgnoreError});
}
//TODO: Check if value is worth storing, use it to inform routing, and compare it
//to the new HTLC max field in channel_update
Some(value)
},
Err(chain::AccessError::UnknownChain) => {
return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
},
Err(chain::AccessError::UnknownTx) => {
return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
},
}
},
};
#[allow(unused_mut, unused_assignments)]
let mut announcement_received_time = 0;
#[cfg(feature = "std")]
{
announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
}
let chan_info = ChannelInfo {
features: msg.features.clone(),
node_one: NodeId::from_pubkey(&msg.node_id_1),
one_to_two: None,
node_two: NodeId::from_pubkey(&msg.node_id_2),
two_to_one: None,
capacity_sats: utxo_value,
announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
{ full_msg.cloned() } else { None },
announcement_received_time,
};
self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
}
/// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
2020-05-03 11:01:55 -04:00
/// If permanent, removes a channel from the local storage.
/// May cause the removal of nodes too, if this was their last channel.
/// If not permanent, makes channels unavailable for routing.
pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
let mut channels = self.channels.write().unwrap();
if is_permanent {
if let Some(chan) = channels.remove(&short_channel_id) {
let mut nodes = self.nodes.write().unwrap();
Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
}
} else {
if let Some(chan) = channels.get_mut(&short_channel_id) {
2020-05-03 16:06:59 -04:00
if let Some(one_to_two) = chan.one_to_two.as_mut() {
one_to_two.enabled = false;
}
if let Some(two_to_one) = chan.two_to_one.as_mut() {
two_to_one.enabled = false;
}
}
}
}
/// Marks a node in the graph as failed.
pub fn node_failed(&self, _node_id: &PublicKey, is_permanent: bool) {
if is_permanent {
// TODO: Wholly remove the node
} else {
// TODO: downgrade the node
}
}
#[cfg(feature = "std")]
/// Removes information about channels that we haven't heard any updates about in some time.
/// This can be used regularly to prune the network graph of channels that likely no longer
/// exist.
///
/// While there is no formal requirement that nodes regularly re-broadcast their channel
/// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
/// pruning occur for updates which are at least two weeks old, which we implement here.
///
/// Note that for users of the `lightning-background-processor` crate this method may be
/// automatically called regularly for you.
///
/// This method is only available with the `std` feature. See
/// [`NetworkGraph::remove_stale_channels_with_time`] for `no-std` use.
pub fn remove_stale_channels(&self) {
let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
self.remove_stale_channels_with_time(time);
}
/// Removes information about channels that we haven't heard any updates about in some time.
/// This can be used regularly to prune the network graph of channels that likely no longer
/// exist.
///
/// While there is no formal requirement that nodes regularly re-broadcast their channel
/// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
/// pruning occur for updates which are at least two weeks old, which we implement here.
///
/// This function takes the current unix time as an argument. For users with the `std` feature
/// enabled, [`NetworkGraph::remove_stale_channels`] may be preferable.
pub fn remove_stale_channels_with_time(&self, current_time_unix: u64) {
let mut channels = self.channels.write().unwrap();
// Time out if we haven't received an update in at least 14 days.
if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
// Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
// time.
let mut scids_to_remove = Vec::new();
for (scid, info) in channels.iter_mut() {
if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
info.one_to_two = None;
}
if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
info.two_to_one = None;
}
if info.one_to_two.is_none() && info.two_to_one.is_none() {
// We check the announcement_received_time here to ensure we don't drop
// announcements that we just received and are just waiting for our peer to send a
// channel_update for.
if info.announcement_received_time < min_time_unix as u64 {
scids_to_remove.push(*scid);
}
}
}
if !scids_to_remove.is_empty() {
let mut nodes = self.nodes.write().unwrap();
for scid in scids_to_remove {
let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
Self::remove_channel_in_nodes(&mut nodes, &info, scid);
}
}
}
/// For an already known (from announcement) channel, update info about one of the directions
/// of the channel.
///
/// You probably don't want to call this directly, instead relying on a P2PGossipSync's
/// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
/// routing messages from a source using a protocol other than the lightning P2P protocol.
///
/// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
/// materially in the future will be rejected.
pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
}
/// For an already known (from announcement) channel, update info about one of the directions
/// of the channel without verifying the associated signatures. Because we aren't given the
/// associated signatures here we cannot relay the channel update to any of our peers.
///
/// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
/// materially in the future will be rejected.
pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
self.update_channel_intern(msg, None, None)
}
fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
let dest_node_id;
let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
let chan_was_enabled;
#[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
{
// Note that many tests rely on being able to set arbitrarily old timestamps, thus we
// disable this check during tests!
let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
}
if msg.timestamp as u64 > time + 60 * 60 * 24 {
return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
}
}
let mut channels = self.channels.write().unwrap();
match channels.get_mut(&msg.short_channel_id) {
None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
Some(channel) => {
if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
return Err(LightningError{err:
"htlc_maximum_msat is larger than maximum possible msats".to_owned(),
action: ErrorAction::IgnoreError});
}
if let Some(capacity_sats) = channel.capacity_sats {
// It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
// Don't query UTXO set here to reduce DoS risks.
if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
return Err(LightningError{err:
"htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
action: ErrorAction::IgnoreError});
}
}
macro_rules! check_update_latest {
($target: expr) => {
2020-05-03 16:06:59 -04:00
if let Some(existing_chan_info) = $target.as_ref() {
// The timestamp field is somewhat of a misnomer - the BOLTs use it to
// order updates to ensure you always have the latest one, only
// suggesting that it be at least the current time. For
// channel_updates specifically, the BOLTs discuss the possibility of
// pruning based on the timestamp field being more than two weeks old,
// but only in the non-normative section.
if existing_chan_info.last_update > msg.timestamp {
return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
} else if existing_chan_info.last_update == msg.timestamp {
return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
2020-05-03 16:06:59 -04:00
}
chan_was_enabled = existing_chan_info.enabled;
} else {
chan_was_enabled = false;
}
}
}
2020-05-03 16:06:59 -04:00
macro_rules! get_new_channel_info {
() => { {
let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
{ full_msg.cloned() } else { None };
2020-05-03 16:06:59 -04:00
let updated_channel_update_info = ChannelUpdateInfo {
2020-05-03 16:06:59 -04:00
enabled: chan_enabled,
last_update: msg.timestamp,
cltv_expiry_delta: msg.cltv_expiry_delta,
htlc_minimum_msat: msg.htlc_minimum_msat,
htlc_maximum_msat: msg.htlc_maximum_msat,
2020-05-03 16:06:59 -04:00
fees: RoutingFees {
base_msat: msg.fee_base_msat,
proportional_millionths: msg.fee_proportional_millionths,
2020-05-03 16:06:59 -04:00
},
last_update_message
};
Some(updated_channel_update_info)
} }
}
2020-05-03 16:06:59 -04:00
let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
if msg.flags & 1 == 1 {
2020-05-03 16:06:59 -04:00
dest_node_id = channel.node_one.clone();
check_update_latest!(channel.two_to_one);
if let Some(sig) = sig {
secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
err: "Couldn't parse source node pubkey".to_owned(),
action: ErrorAction::IgnoreAndLog(Level::Debug)
})?, "channel_update");
}
channel.two_to_one = get_new_channel_info!();
} else {
2020-05-03 16:06:59 -04:00
dest_node_id = channel.node_two.clone();
check_update_latest!(channel.one_to_two);
if let Some(sig) = sig {
secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
err: "Couldn't parse destination node pubkey".to_owned(),
action: ErrorAction::IgnoreAndLog(Level::Debug)
})?, "channel_update");
}
channel.one_to_two = get_new_channel_info!();
}
}
}
let mut nodes = self.nodes.write().unwrap();
if chan_enabled {
let node = nodes.get_mut(&dest_node_id).unwrap();
let mut base_msat = msg.fee_base_msat;
let mut proportional_millionths = msg.fee_proportional_millionths;
if let Some(fees) = node.lowest_inbound_channel_fees {
base_msat = cmp::min(base_msat, fees.base_msat);
proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
}
node.lowest_inbound_channel_fees = Some(RoutingFees {
base_msat,
proportional_millionths
});
} else if chan_was_enabled {
let node = nodes.get_mut(&dest_node_id).unwrap();
let mut lowest_inbound_channel_fees = None;
for chan_id in node.channels.iter() {
let chan = channels.get(chan_id).unwrap();
let chan_info_opt;
if chan.node_one == dest_node_id {
chan_info_opt = chan.two_to_one.as_ref();
} else {
chan_info_opt = chan.one_to_two.as_ref();
}
if let Some(chan_info) = chan_info_opt {
if chan_info.enabled {
let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
}
}
}
node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
}
Ok(())
}
fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
macro_rules! remove_from_node {
($node_id: expr) => {
if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
entry.get_mut().channels.retain(|chan_id| {
short_channel_id != *chan_id
});
if entry.get().channels.is_empty() {
entry.remove_entry();
}
} else {
panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
}
}
}
2020-05-03 16:06:59 -04:00
remove_from_node!(chan.node_one);
remove_from_node!(chan.node_two);
}
}
impl ReadOnlyNetworkGraph<'_> {
/// Returns all known valid channels' short ids along with announced channel info.
///
/// (C-not exported) because we have no mapping for `BTreeMap`s
pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
&*self.channels
}
/// Returns information on a channel with the given id.
pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
self.channels.get(&short_channel_id)
}
#[cfg(c_bindings)] // Non-bindings users should use `channels`
/// Returns the list of channels in the graph
pub fn list_channels(&self) -> Vec<u64> {
self.channels.keys().map(|c| *c).collect()
}
/// Returns all known nodes' public keys along with announced node info.
///
/// (C-not exported) because we have no mapping for `BTreeMap`s
pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
&*self.nodes
}
/// Returns information on a node with the given id.
pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
self.nodes.get(node_id)
}
#[cfg(c_bindings)] // Non-bindings users should use `nodes`
/// Returns the list of nodes in the graph
pub fn list_nodes(&self) -> Vec<NodeId> {
self.nodes.keys().map(|n| *n).collect()
}
/// Get network addresses by node id.
/// Returns None if the requested node is completely unknown,
/// or if node announcement for the node was never received.
pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
if let Some(node_info) = node.announcement_info.as_ref() {
return Some(node_info.addresses.clone())
}
}
None
}
}
#[cfg(test)]
mod tests {
use chain;
use ln::channelmanager;
use ln::chan_utils::make_funding_redeemscript;
use ln::PaymentHash;
use ln::features::InitFeatures;
use routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
use ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
use util::test_utils;
use util::ser::{ReadableArgs, Writeable};
use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
use util::scid_utils::scid_from_parts;
use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
use bitcoin::hashes::Hash;
use bitcoin::network::constants::Network;
use bitcoin::blockdata::constants::genesis_block;
use bitcoin::blockdata::script::Script;
use bitcoin::blockdata::transaction::TxOut;
use hex;
2022-05-05 17:59:38 +02:00
use bitcoin::secp256k1::{PublicKey, SecretKey};
use bitcoin::secp256k1::{All, Secp256k1};
2021-08-01 18:22:06 +02:00
use io;
2022-05-05 17:59:38 +02:00
use bitcoin::secp256k1;
use prelude::*;
use sync::Arc;
fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
let logger = Arc::new(test_utils::TestLogger::new());
NetworkGraph::new(genesis_hash, logger)
}
fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
) {
let secp_ctx = Secp256k1::new();
let logger = Arc::new(test_utils::TestLogger::new());
let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
(secp_ctx, gossip_sync)
}
#[test]
#[cfg(feature = "std")]
fn request_full_sync_finite_times() {
let network_graph = create_network_graph();
let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
assert!(gossip_sync.should_request_full_sync(&node_id));
assert!(gossip_sync.should_request_full_sync(&node_id));
assert!(gossip_sync.should_request_full_sync(&node_id));
assert!(gossip_sync.should_request_full_sync(&node_id));
assert!(gossip_sync.should_request_full_sync(&node_id));
assert!(!gossip_sync.should_request_full_sync(&node_id));
}
fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
let mut unsigned_announcement = UnsignedNodeAnnouncement {
features: channelmanager::provided_node_features(),
timestamp: 100,
node_id: node_id,
rgb: [0; 3],
alias: [0; 32],
addresses: Vec::new(),
excess_address_data: Vec::new(),
excess_data: Vec::new(),
};
f(&mut unsigned_announcement);
let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
NodeAnnouncement {
2022-05-05 17:59:38 +02:00
signature: secp_ctx.sign_ecdsa(&msghash, node_key),
contents: unsigned_announcement
}
}
fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
let mut unsigned_announcement = UnsignedChannelAnnouncement {
features: channelmanager::provided_channel_features(),
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 0,
node_id_1,
node_id_2,
bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
excess_data: Vec::new(),
};
f(&mut unsigned_announcement);
let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
ChannelAnnouncement {
2022-05-05 17:59:38 +02:00
node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
contents: unsigned_announcement,
}
}
fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
&PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
}
fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
let mut unsigned_channel_update = UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 0,
timestamp: 100,
flags: 0,
cltv_expiry_delta: 144,
htlc_minimum_msat: 1_000_000,
htlc_maximum_msat: 1_000_000,
fee_base_msat: 10_000,
fee_proportional_millionths: 20,
excess_data: Vec::new()
};
f(&mut unsigned_channel_update);
let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
ChannelUpdate {
2022-05-05 17:59:38 +02:00
signature: secp_ctx.sign_ecdsa(&msghash, node_key),
contents: unsigned_channel_update
}
}
#[test]
fn handling_node_announcements() {
let network_graph = create_network_graph();
let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
let zero_hash = Sha256dHash::hash(&[0; 32]);
let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
match gossip_sync.handle_node_announcement(&valid_announcement) {
Ok(_) => panic!(),
Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
};
{
// Announce a channel to add a corresponding node.
let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
match gossip_sync.handle_channel_announcement(&valid_announcement) {
Ok(res) => assert!(res),
_ => panic!()
};
}
match gossip_sync.handle_node_announcement(&valid_announcement) {
Ok(res) => assert!(res),
Err(_) => panic!()
};
let fake_msghash = hash_to_message!(&zero_hash);
match gossip_sync.handle_node_announcement(
&NodeAnnouncement {
2022-05-05 17:59:38 +02:00
signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
contents: valid_announcement.contents.clone()
}) {
Ok(_) => panic!(),
Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
};
let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
unsigned_announcement.timestamp += 1000;
unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
}, node_1_privkey, &secp_ctx);
// Return false because contains excess data.
match gossip_sync.handle_node_announcement(&announcement_with_data) {
Ok(res) => assert!(!res),
Err(_) => panic!()
};
// Even though previous announcement was not relayed further, we still accepted it,
// so we now won't accept announcements before the previous one.
let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
unsigned_announcement.timestamp += 1000 - 10;
}, node_1_privkey, &secp_ctx);
match gossip_sync.handle_node_announcement(&outdated_announcement) {
Ok(_) => panic!(),
Err(e) => assert_eq!(e.err, "Update older than last processed update")
};
}
#[test]
fn handling_channel_announcements() {
let secp_ctx = Secp256k1::new();
let logger = test_utils::TestLogger::new();
let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
let good_script = get_channel_script(&secp_ctx);
let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
// Test if the UTXO lookups were not supported
let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
let network_graph = NetworkGraph::new(genesis_hash, &logger);
let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
match gossip_sync.handle_channel_announcement(&valid_announcement) {
Ok(res) => assert!(res),
_ => panic!()
};
{
match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
None => panic!(),
Some(_) => ()
};
}
// If we receive announcement for the same channel (with UTXO lookups disabled),
// drop new one on the floor, since we can't see any changes.
match gossip_sync.handle_channel_announcement(&valid_announcement) {
Ok(_) => panic!(),
Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
};
// Test if an associated transaction were not on-chain (or not confirmed).
let chain_source = test_utils::TestChainSource::new(Network::Testnet);
*chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
let network_graph = NetworkGraph::new(genesis_hash, &logger);
gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
unsigned_announcement.short_channel_id += 1;
}, node_1_privkey, node_2_privkey, &secp_ctx);
match gossip_sync.handle_channel_announcement(&valid_announcement) {
Ok(_) => panic!(),
Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
};
// Now test if the transaction is found in the UTXO set and the script is correct.
*chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
unsigned_announcement.short_channel_id += 2;
}, node_1_privkey, node_2_privkey, &secp_ctx);
match gossip_sync.handle_channel_announcement(&valid_announcement) {
Ok(res) => assert!(res),
_ => panic!()
};
{
match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
None => panic!(),
Some(_) => ()
};
}
// If we receive announcement for the same channel, once we've validated it against the
// chain, we simply ignore all new (duplicate) announcements.
*chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
match gossip_sync.handle_channel_announcement(&valid_announcement) {
Ok(_) => panic!(),
Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
};
// Don't relay valid channels with excess data
let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
unsigned_announcement.short_channel_id += 3;
unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
}, node_1_privkey, node_2_privkey, &secp_ctx);
match gossip_sync.handle_channel_announcement(&valid_announcement) {
Ok(res) => assert!(!res),
_ => panic!()
};
let mut invalid_sig_announcement = valid_announcement.clone();
invalid_sig_announcement.contents.excess_data = Vec::new();
match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
Ok(_) => panic!(),
Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
};
let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
Ok(_) => panic!(),
Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
};
}
#[test]
fn handling_channel_update() {
let secp_ctx = Secp256k1::new();
let logger = test_utils::TestLogger::new();
let chain_source = test_utils::TestChainSource::new(Network::Testnet);
let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
let network_graph = NetworkGraph::new(genesis_hash, &logger);
let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
let amount_sats = 1000_000;
let short_channel_id;
{
// Announce a channel we will update
let good_script = get_channel_script(&secp_ctx);
*chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
short_channel_id = valid_channel_announcement.contents.short_channel_id;
match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
Ok(_) => (),
Err(_) => panic!()
};
}
let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
match gossip_sync.handle_channel_update(&valid_channel_update) {
Ok(res) => assert!(res),
_ => panic!(),
};
{
match network_graph.read_only().channels().get(&short_channel_id) {
None => panic!(),
Some(channel_info) => {
2020-05-03 16:06:59 -04:00
assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
assert!(channel_info.two_to_one.is_none());
}
};
}
let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
unsigned_channel_update.timestamp += 100;
unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
}, node_1_privkey, &secp_ctx);
// Return false because contains excess data
match gossip_sync.handle_channel_update(&valid_channel_update) {
Ok(res) => assert!(!res),
_ => panic!()
};
let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
unsigned_channel_update.timestamp += 110;
unsigned_channel_update.short_channel_id += 1;
}, node_1_privkey, &secp_ctx);
match gossip_sync.handle_channel_update(&valid_channel_update) {
Ok(_) => panic!(),
Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
};
let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
unsigned_channel_update.timestamp += 110;
}, node_1_privkey, &secp_ctx);
match gossip_sync.handle_channel_update(&valid_channel_update) {
Ok(_) => panic!(),
Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
};
let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
unsigned_channel_update.timestamp += 110;
}, node_1_privkey, &secp_ctx);
match gossip_sync.handle_channel_update(&valid_channel_update) {
Ok(_) => panic!(),
Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
};
// Even though previous update was not relayed further, we still accepted it,
// so we now won't accept update before the previous one.
let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
unsigned_channel_update.timestamp += 100;
}, node_1_privkey, &secp_ctx);
match gossip_sync.handle_channel_update(&valid_channel_update) {
Ok(_) => panic!(),
Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
};
let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
unsigned_channel_update.timestamp += 500;
}, node_1_privkey, &secp_ctx);
let zero_hash = Sha256dHash::hash(&[0; 32]);
let fake_msghash = hash_to_message!(&zero_hash);
2022-05-05 17:59:38 +02:00
invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
Ok(_) => panic!(),
Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
};
}
#[test]
fn handling_network_update() {
let logger = test_utils::TestLogger::new();
let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
let network_graph = NetworkGraph::new(genesis_hash, &logger);
let secp_ctx = Secp256k1::new();
let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
{
// There is no nodes in the table at the beginning.
assert_eq!(network_graph.read_only().nodes().len(), 0);
}
let short_channel_id;
{
// Announce a channel we will update
let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
short_channel_id = valid_channel_announcement.contents.short_channel_id;
let chain_source: Option<&test_utils::TestChainSource> = None;
assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
network_graph.handle_event(&Event::PaymentPathFailed {
payment_id: None,
payment_hash: PaymentHash([0; 32]),
payment_failed_permanently: false,
all_paths_failed: true,
path: vec![],
network_update: Some(NetworkUpdate::ChannelUpdateMessage {
msg: valid_channel_update,
}),
short_channel_id: None,
retry: None,
error_code: None,
error_data: None,
});
assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2020-05-03 16:06:59 -04:00
}
// Non-permanent closing just disables a channel
{
match network_graph.read_only().channels().get(&short_channel_id) {
2020-05-03 16:06:59 -04:00
None => panic!(),
Some(channel_info) => {
assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2020-05-03 16:06:59 -04:00
}
};
network_graph.handle_event(&Event::PaymentPathFailed {
payment_id: None,
payment_hash: PaymentHash([0; 32]),
payment_failed_permanently: false,
all_paths_failed: true,
path: vec![],
network_update: Some(NetworkUpdate::ChannelFailure {
short_channel_id,
is_permanent: false,
}),
short_channel_id: None,
retry: None,
error_code: None,
error_data: None,
});
match network_graph.read_only().channels().get(&short_channel_id) {
None => panic!(),
Some(channel_info) => {
2020-05-03 16:06:59 -04:00
assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
}
};
}
// Permanent closing deletes a channel
network_graph.handle_event(&Event::PaymentPathFailed {
payment_id: None,
payment_hash: PaymentHash([0; 32]),
payment_failed_permanently: false,
all_paths_failed: true,
path: vec![],
network_update: Some(NetworkUpdate::ChannelFailure {
short_channel_id,
is_permanent: true,
}),
short_channel_id: None,
retry: None,
error_code: None,
error_data: None,
});
assert_eq!(network_graph.read_only().channels().len(), 0);
// Nodes are also deleted because there are no associated channels anymore
assert_eq!(network_graph.read_only().nodes().len(), 0);
// TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
}
#[test]
fn test_channel_timeouts() {
// Test the removal of channels with `remove_stale_channels`.
let logger = test_utils::TestLogger::new();
let chain_source = test_utils::TestChainSource::new(Network::Testnet);
let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
let network_graph = NetworkGraph::new(genesis_hash, &logger);
let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
let secp_ctx = Secp256k1::new();
let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
let short_channel_id = valid_channel_announcement.contents.short_channel_id;
let chain_source: Option<&test_utils::TestChainSource> = None;
assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
network_graph.remove_stale_channels_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
assert_eq!(network_graph.read_only().channels().len(), 1);
assert_eq!(network_graph.read_only().nodes().len(), 2);
network_graph.remove_stale_channels_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
#[cfg(feature = "std")]
{
// In std mode, a further check is performed before fully removing the channel -
// the channel_announcement must have been received at least two weeks ago. We
// fudge that here by indicating the time has jumped two weeks. Note that the
// directional channel information will have been removed already..
assert_eq!(network_graph.read_only().channels().len(), 1);
assert_eq!(network_graph.read_only().nodes().len(), 2);
assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
use std::time::{SystemTime, UNIX_EPOCH};
let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
network_graph.remove_stale_channels_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
}
assert_eq!(network_graph.read_only().channels().len(), 0);
assert_eq!(network_graph.read_only().nodes().len(), 0);
}
#[test]
fn getting_next_channel_announcements() {
let network_graph = create_network_graph();
let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
// Channels were not announced yet.
let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
assert!(channels_with_announcements.is_none());
let short_channel_id;
{
// Announce a channel we will update
let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
short_channel_id = valid_channel_announcement.contents.short_channel_id;
match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
Ok(_) => (),
Err(_) => panic!()
};
}
// Contains initial channel announcement now.
let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
if let Some(channel_announcements) = channels_with_announcements {
let (_, ref update_1, ref update_2) = channel_announcements;
assert_eq!(update_1, &None);
assert_eq!(update_2, &None);
} else {
panic!();
}
{
// Valid channel update
let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
unsigned_channel_update.timestamp = 101;
}, node_1_privkey, &secp_ctx);
match gossip_sync.handle_channel_update(&valid_channel_update) {
Ok(_) => (),
Err(_) => panic!()
};
}
// Now contains an initial announcement and an update.
let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
if let Some(channel_announcements) = channels_with_announcements {
let (_, ref update_1, ref update_2) = channel_announcements;
assert_ne!(update_1, &None);
assert_eq!(update_2, &None);
} else {
panic!();
}
{
// Channel update with excess data.
let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
unsigned_channel_update.timestamp = 102;
unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
}, node_1_privkey, &secp_ctx);
match gossip_sync.handle_channel_update(&valid_channel_update) {
Ok(_) => (),
Err(_) => panic!()
};
}
// Test that announcements with excess data won't be returned
let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
if let Some(channel_announcements) = channels_with_announcements {
let (_, ref update_1, ref update_2) = channel_announcements;
assert_eq!(update_1, &None);
assert_eq!(update_2, &None);
} else {
panic!();
}
// Further starting point have no channels after it
let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
assert!(channels_with_announcements.is_none());
}
#[test]
fn getting_next_node_announcements() {
let network_graph = create_network_graph();
let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
// No nodes yet.
let next_announcements = gossip_sync.get_next_node_announcement(None);
assert!(next_announcements.is_none());
{
// Announce a channel to add 2 nodes
let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
Ok(_) => (),
Err(_) => panic!()
};
}
// Nodes were never announced
let next_announcements = gossip_sync.get_next_node_announcement(None);
assert!(next_announcements.is_none());
{
let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
match gossip_sync.handle_node_announcement(&valid_announcement) {
Ok(_) => (),
Err(_) => panic!()
};
let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
match gossip_sync.handle_node_announcement(&valid_announcement) {
Ok(_) => (),
Err(_) => panic!()
};
}
let next_announcements = gossip_sync.get_next_node_announcement(None);
assert!(next_announcements.is_some());
// Skip the first node.
let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
assert!(next_announcements.is_some());
{
// Later announcement which should not be relayed (excess data) prevent us from sharing a node
let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
unsigned_announcement.timestamp += 10;
unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
}, node_2_privkey, &secp_ctx);
match gossip_sync.handle_node_announcement(&valid_announcement) {
Ok(res) => assert!(!res),
Err(_) => panic!()
};
}
let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
assert!(next_announcements.is_none());
}
#[test]
fn network_graph_serialization() {
let network_graph = create_network_graph();
let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
// Announce a channel to add a corresponding node.
let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
match gossip_sync.handle_channel_announcement(&valid_announcement) {
Ok(res) => assert!(res),
_ => panic!()
};
let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
match gossip_sync.handle_node_announcement(&valid_announcement) {
Ok(_) => (),
Err(_) => panic!()
};
let mut w = test_utils::TestVecWriter(Vec::new());
assert!(!network_graph.read_only().nodes().is_empty());
assert!(!network_graph.read_only().channels().is_empty());
network_graph.write(&mut w).unwrap();
let logger = Arc::new(test_utils::TestLogger::new());
assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
}
#[test]
fn network_graph_tlv_serialization() {
2022-06-01 14:50:40 -07:00
let network_graph = create_network_graph();
network_graph.set_last_rapid_gossip_sync_timestamp(42);
let mut w = test_utils::TestVecWriter(Vec::new());
network_graph.write(&mut w).unwrap();
let logger = Arc::new(test_utils::TestLogger::new());
let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
assert!(reassembled_network_graph == network_graph);
assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
}
#[test]
#[cfg(feature = "std")]
fn calling_sync_routing_table() {
use std::time::{SystemTime, UNIX_EPOCH};
use ln::msgs::Init;
let network_graph = create_network_graph();
let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
let chain_hash = genesis_block(Network::Testnet).header.block_hash();
// It should ignore if gossip_queries feature is not enabled
{
let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
let events = gossip_sync.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 0);
}
// It should send a gossip_timestamp_filter with the correct information
{
let mut features = InitFeatures::empty();
features.set_gossip_queries_optional();
let init_msg = Init { features, remote_network_address: None };
gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
let events = gossip_sync.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
match &events[0] {
MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
assert_eq!(node_id, &node_id_1);
assert_eq!(msg.chain_hash, chain_hash);
let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
assert_eq!(msg.timestamp_range, u32::max_value());
},
_ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
};
}
}
#[test]
fn handling_query_channel_range() {
let network_graph = create_network_graph();
let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
let chain_hash = genesis_block(Network::Testnet).header.block_hash();
let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
let mut scids: Vec<u64> = vec![
scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
];
// used for testing multipart reply across blocks
for block in 100000..=108001 {
scids.push(scid_from_parts(block, 0, 0).unwrap());
}
// used for testing resumption on same block
scids.push(scid_from_parts(108001, 1, 0).unwrap());
for scid in scids {
let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
unsigned_announcement.short_channel_id = scid;
}, node_1_privkey, node_2_privkey, &secp_ctx);
match gossip_sync.handle_channel_announcement(&valid_announcement) {
Ok(_) => (),
_ => panic!()
};
}
// Error when number_of_blocks=0
do_handling_query_channel_range(
&gossip_sync,
&node_id_2,
QueryChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 0,
number_of_blocks: 0,
},
false,
vec![ReplyChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 0,
number_of_blocks: 0,
sync_complete: true,
short_channel_ids: vec![]
}]
);
// Error when wrong chain
do_handling_query_channel_range(
&gossip_sync,
&node_id_2,
QueryChannelRange {
chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
first_blocknum: 0,
number_of_blocks: 0xffff_ffff,
},
false,
vec![ReplyChannelRange {
chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
first_blocknum: 0,
number_of_blocks: 0xffff_ffff,
sync_complete: true,
short_channel_ids: vec![],
}]
);
// Error when first_blocknum > 0xffffff
do_handling_query_channel_range(
&gossip_sync,
&node_id_2,
QueryChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 0x01000000,
number_of_blocks: 0xffff_ffff,
},
false,
vec![ReplyChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 0x01000000,
number_of_blocks: 0xffff_ffff,
sync_complete: true,
short_channel_ids: vec![]
}]
);
// Empty reply when max valid SCID block num
do_handling_query_channel_range(
&gossip_sync,
&node_id_2,
QueryChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 0xffffff,
number_of_blocks: 1,
},
true,
vec![
ReplyChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 0xffffff,
number_of_blocks: 1,
sync_complete: true,
short_channel_ids: vec![]
},
]
);
// No results in valid query range
do_handling_query_channel_range(
&gossip_sync,
&node_id_2,
QueryChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 1000,
number_of_blocks: 1000,
},
true,
vec![
ReplyChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 1000,
number_of_blocks: 1000,
sync_complete: true,
short_channel_ids: vec![],
}
]
);
// Overflow first_blocknum + number_of_blocks
do_handling_query_channel_range(
&gossip_sync,
&node_id_2,
QueryChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 0xfe0000,
number_of_blocks: 0xffffffff,
},
true,
vec![
ReplyChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 0xfe0000,
number_of_blocks: 0xffffffff - 0xfe0000,
sync_complete: true,
short_channel_ids: vec![
0xfffffe_ffffff_ffff, // max
]
}
]
);
// Single block exactly full
do_handling_query_channel_range(
&gossip_sync,
&node_id_2,
QueryChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 100000,
number_of_blocks: 8000,
},
true,
vec![
ReplyChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 100000,
number_of_blocks: 8000,
sync_complete: true,
short_channel_ids: (100000..=107999)
.map(|block| scid_from_parts(block, 0, 0).unwrap())
.collect(),
},
]
);
// Multiple split on new block
do_handling_query_channel_range(
&gossip_sync,
&node_id_2,
QueryChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 100000,
number_of_blocks: 8001,
},
true,
vec![
ReplyChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 100000,
number_of_blocks: 7999,
sync_complete: false,
short_channel_ids: (100000..=107999)
.map(|block| scid_from_parts(block, 0, 0).unwrap())
.collect(),
},
ReplyChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 107999,
number_of_blocks: 2,
sync_complete: true,
short_channel_ids: vec![
scid_from_parts(108000, 0, 0).unwrap(),
],
}
]
);
// Multiple split on same block
do_handling_query_channel_range(
&gossip_sync,
&node_id_2,
QueryChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 100002,
number_of_blocks: 8000,
},
true,
vec![
ReplyChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 100002,
number_of_blocks: 7999,
sync_complete: false,
short_channel_ids: (100002..=108001)
.map(|block| scid_from_parts(block, 0, 0).unwrap())
.collect(),
},
ReplyChannelRange {
chain_hash: chain_hash.clone(),
first_blocknum: 108001,
number_of_blocks: 1,
sync_complete: true,
short_channel_ids: vec![
scid_from_parts(108001, 1, 0).unwrap(),
],
}
]
);
}
fn do_handling_query_channel_range(
gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
test_node_id: &PublicKey,
msg: QueryChannelRange,
expected_ok: bool,
expected_replies: Vec<ReplyChannelRange>
) {
let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
let query_end_blocknum = msg.end_blocknum();
let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
if expected_ok {
assert!(result.is_ok());
} else {
assert!(result.is_err());
}
let events = gossip_sync.get_and_clear_pending_msg_events();
assert_eq!(events.len(), expected_replies.len());
for i in 0..events.len() {
let expected_reply = &expected_replies[i];
match &events[i] {
MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
assert_eq!(node_id, test_node_id);
assert_eq!(msg.chain_hash, expected_reply.chain_hash);
assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
assert_eq!(msg.sync_complete, expected_reply.sync_complete);
assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
// Enforce exactly the sequencing requirements present on c-lightning v0.9.3
assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
assert!(msg.first_blocknum >= max_firstblocknum);
max_firstblocknum = msg.first_blocknum;
c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
// Check that the last block count is >= the query's end_blocknum
if i == events.len() - 1 {
assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
}
},
_ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
}
}
}
#[test]
fn handling_query_short_channel_ids() {
let network_graph = create_network_graph();
let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
let chain_hash = genesis_block(Network::Testnet).header.block_hash();
let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
chain_hash,
short_channel_ids: vec![0x0003e8_000000_0000],
});
assert!(result.is_err());
}
#[test]
fn displays_node_alias() {
let format_str_alias = |alias: &str| {
let mut bytes = [0u8; 32];
bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
format!("{}", NodeAlias(bytes))
};
assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
let format_bytes_alias = |alias: &[u8]| {
let mut bytes = [0u8; 32];
bytes[..alias.len()].copy_from_slice(alias);
format!("{}", NodeAlias(bytes))
};
assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
}
#[test]
fn channel_info_is_readable() {
let chanmon_cfgs = ::ln::functional_test_utils::create_chanmon_cfgs(2);
let node_cfgs = ::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = ::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
let nodes = ::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
// 1. Test encoding/decoding of ChannelUpdateInfo
let chan_update_info = ChannelUpdateInfo {
last_update: 23,
enabled: true,
cltv_expiry_delta: 42,
htlc_minimum_msat: 1234,
htlc_maximum_msat: 5678,
fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
last_update_message: None,
};
let mut encoded_chan_update_info: Vec<u8> = Vec::new();
assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
// First make sure we can read ChannelUpdateInfos we just wrote
let read_chan_update_info: ChannelUpdateInfo = ::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
assert_eq!(chan_update_info, read_chan_update_info);
// Check the serialization hasn't changed.
let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
// Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
// or the ChannelUpdate enclosed with `last_update_message`.
let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
assert!(read_chan_update_info_res.is_err());
let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
assert!(read_chan_update_info_res.is_err());
// 2. Test encoding/decoding of ChannelInfo
// Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
let chan_info_none_updates = ChannelInfo {
features: channelmanager::provided_channel_features(),
node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
one_to_two: None,
node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
two_to_one: None,
capacity_sats: None,
announcement_message: None,
announcement_received_time: 87654,
};
let mut encoded_chan_info: Vec<u8> = Vec::new();
assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
assert_eq!(chan_info_none_updates, read_chan_info);
// Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
let chan_info_some_updates = ChannelInfo {
features: channelmanager::provided_channel_features(),
node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
one_to_two: Some(chan_update_info.clone()),
node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
two_to_one: Some(chan_update_info.clone()),
capacity_sats: None,
announcement_message: None,
announcement_received_time: 87654,
};
let mut encoded_chan_info: Vec<u8> = Vec::new();
assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
assert_eq!(chan_info_some_updates, read_chan_info);
// Check the serialization hasn't changed.
let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
// Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
// `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
assert_eq!(read_chan_info.announcement_received_time, 87654);
assert_eq!(read_chan_info.one_to_two, None);
assert_eq!(read_chan_info.two_to_one, None);
let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
assert_eq!(read_chan_info.announcement_received_time, 87654);
assert_eq!(read_chan_info.one_to_two, None);
assert_eq!(read_chan_info.two_to_one, None);
}
#[test]
fn node_info_is_readable() {
use std::convert::TryFrom;
// 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
let valid_netaddr = ::ln::msgs::NetAddress::Hostname { hostname: ::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
let valid_node_ann_info = NodeAnnouncementInfo {
features: channelmanager::provided_node_features(),
last_update: 0,
rgb: [0u8; 3],
alias: NodeAlias([0u8; 32]),
addresses: vec![valid_netaddr],
announcement_message: None,
};
let mut encoded_valid_node_ann_info = Vec::new();
assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
let read_valid_node_ann_info: NodeAnnouncementInfo = ::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
assert!(read_invalid_node_ann_info_res.is_err());
// 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
let valid_node_info = NodeInfo {
channels: Vec::new(),
lowest_inbound_channel_fees: None,
announcement_info: Some(valid_node_ann_info),
};
let mut encoded_valid_node_info = Vec::new();
assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
let read_valid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
assert_eq!(read_valid_node_info, valid_node_info);
let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
let read_invalid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
assert_eq!(read_invalid_node_info.announcement_info, None);
}
}
#[cfg(all(test, feature = "_bench_unstable"))]
mod benches {
use super::*;
use test::Bencher;
use std::io::Read;
#[bench]
fn read_network_graph(bench: &mut Bencher) {
let logger = ::util::test_utils::TestLogger::new();
let mut d = ::routing::router::bench_utils::get_route_file().unwrap();
let mut v = Vec::new();
d.read_to_end(&mut v).unwrap();
bench.iter(|| {
let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
});
}
#[bench]
fn write_network_graph(bench: &mut Bencher) {
let logger = ::util::test_utils::TestLogger::new();
let mut d = ::routing::router::bench_utils::get_route_file().unwrap();
let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
bench.iter(|| {
let _ = net_graph.encode();
});
}
}