rust-lightning/lightning/src/ln/channelmanager.rs

4817 lines
217 KiB
Rust
Raw Normal View History

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! The top-level channel management and payment tracking stuff lives here.
//!
//! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
//! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
//! upon reconnect to the relevant peer(s).
//!
2020-05-06 19:04:44 -04:00
//! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
//! on-chain transactions (it only monitors the chain to watch for any force-closes that might
//! imply it needs to fail HTLCs/payments/channels it manages).
2020-10-06 16:49:06 -07:00
//!
use bitcoin::blockdata::block::{Block, BlockHeader};
use bitcoin::blockdata::transaction::Transaction;
2017-12-25 01:05:27 -05:00
use bitcoin::blockdata::constants::genesis_block;
use bitcoin::network::constants::Network;
use bitcoin::hashes::{Hash, HashEngine};
use bitcoin::hashes::hmac::{Hmac, HmacEngine};
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
use bitcoin::hashes::cmp::fixed_time_eq;
use bitcoin::hash_types::{BlockHash, Txid};
2020-04-27 16:51:59 +02:00
use bitcoin::secp256k1::key::{SecretKey,PublicKey};
use bitcoin::secp256k1::Secp256k1;
use bitcoin::secp256k1::ecdh::SharedSecret;
use bitcoin::secp256k1;
2017-12-25 01:05:27 -05:00
use chain;
use chain::Confirm;
use chain::Watch;
use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
use chain::transaction::{OutPoint, TransactionData};
// Since this struct is returned in `list_channels` methods, expose it here in case users want to
// construct one themselves.
pub use ln::channel::CounterpartyForwardingInfo;
use ln::channel::{Channel, ChannelError};
use ln::features::{InitFeatures, NodeFeatures};
2020-05-02 09:37:38 -04:00
use routing::router::{Route, RouteHop};
2017-12-25 01:05:27 -05:00
use ln::msgs;
use ln::msgs::NetAddress;
use ln::onion_utils;
2020-06-28 14:43:10 +03:00
use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
use util::config::UserConfig;
use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
use util::{byte_utils, events};
use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
use util::chacha20::{ChaCha20, ChaChaReader};
use util::logger::Logger;
use util::errors::APIError;
2017-12-25 01:05:27 -05:00
use std::{cmp, mem};
use std::collections::{HashMap, hash_map, HashSet};
use std::io::{Cursor, Read};
use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::time::Duration;
#[cfg(any(test, feature = "allow_wallclock_use"))]
use std::time::Instant;
use std::marker::{Sync, Send};
use std::ops::Deref;
use bitcoin::hashes::hex::ToHex;
2017-12-25 01:05:27 -05:00
// We hold various information about HTLC relay in the HTLC objects in Channel itself:
//
// Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
// forward the HTLC with information it will give back to us when it does so, or if it should Fail
// the HTLC with the relevant message for the Channel to handle giving to the remote peer.
//
// Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
// Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
// with it to track where it came from (in case of onwards-forward error), waiting a random delay
// before we forward it.
//
// We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
// relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
// to either fail-backwards or fulfill the HTLC backwards along the relevant path).
// Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
// our payment, which we can use to decode errors or inform the user that the payment was sent.
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
enum PendingHTLCRouting {
Forward {
onion_packet: msgs::OnionPacket,
short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
},
Receive {
payment_data: Option<msgs::FinalOnionHopData>,
incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
},
}
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
pub(super) struct PendingHTLCInfo {
routing: PendingHTLCRouting,
incoming_shared_secret: [u8; 32],
payment_hash: PaymentHash,
pub(super) amt_to_forward: u64,
pub(super) outgoing_cltv_value: u32,
}
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
pub(super) enum HTLCFailureMsg {
Relay(msgs::UpdateFailHTLC),
Malformed(msgs::UpdateFailMalformedHTLC),
}
/// Stores whether we can't forward an HTLC or relevant forwarding info
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
pub(super) enum PendingHTLCStatus {
Forward(PendingHTLCInfo),
Fail(HTLCFailureMsg),
}
pub(super) enum HTLCForwardInfo {
AddHTLC {
forward_info: PendingHTLCInfo,
// These fields are produced in `forward_htlcs()` and consumed in
// `process_pending_htlc_forwards()` for constructing the
// `HTLCSource::PreviousHopData` for failed and forwarded
// HTLCs.
prev_short_channel_id: u64,
prev_htlc_id: u64,
prev_funding_outpoint: OutPoint,
},
FailHTLC {
htlc_id: u64,
err_packet: msgs::OnionErrorPacket,
},
}
/// Tracks the inbound corresponding to an outbound HTLC
#[derive(Clone, PartialEq)]
pub(crate) struct HTLCPreviousHopData {
short_channel_id: u64,
htlc_id: u64,
incoming_packet_shared_secret: [u8; 32],
// This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
// channel with a preimage provided by the forward channel.
outpoint: OutPoint,
}
struct ClaimableHTLC {
prev_hop: HTLCPreviousHopData,
value: u64,
/// Filled in when the HTLC was received with a payment_secret packet, which contains a
/// total_msat (which may differ from value if this is a Multi-Path Payment) and a
/// payment_secret which prevents path-probing attacks and can associate different HTLCs which
/// are part of the same payment.
payment_data: Option<msgs::FinalOnionHopData>,
cltv_expiry: u32,
}
/// Tracks the inbound corresponding to an outbound HTLC
#[derive(Clone, PartialEq)]
pub(crate) enum HTLCSource {
PreviousHopData(HTLCPreviousHopData),
OutboundRoute {
path: Vec<RouteHop>,
session_priv: SecretKey,
/// Technically we can recalculate this from the route, but we cache it here to avoid
/// doing a double-pass on route when we get a failure back
first_hop_htlc_msat: u64,
},
}
#[cfg(test)]
impl HTLCSource {
pub fn dummy() -> Self {
HTLCSource::OutboundRoute {
path: Vec::new(),
session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
first_hop_htlc_msat: 0,
}
}
}
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
pub(super) enum HTLCFailReason {
LightningError {
err: msgs::OnionErrorPacket,
},
Reason {
failure_code: u16,
data: Vec<u8>,
}
}
2017-12-25 01:05:27 -05:00
/// payment_hash type, use to cross-lock hop
/// (C-not exported) as we just use [u8; 32] directly
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
pub struct PaymentHash(pub [u8;32]);
/// payment_preimage type, use to route payment between hop
/// (C-not exported) as we just use [u8; 32] directly
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
pub struct PaymentPreimage(pub [u8;32]);
/// payment_secret type, use to authenticate sender to the receiver and tie MPP HTLCs together
/// (C-not exported) as we just use [u8; 32] directly
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
pub struct PaymentSecret(pub [u8;32]);
type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
/// Error type returned across the channel_state mutex boundary. When an Err is generated for a
/// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
/// immediately (ie with no further calls on it made). Thus, this step happens inside a
/// channel_state lock. We then return the set of things that need to be done outside the lock in
/// this struct and call handle_error!() on it.
struct MsgHandleErrInternal {
err: msgs::LightningError,
shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
}
impl MsgHandleErrInternal {
#[inline]
fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
Self {
err: LightningError {
err: err.clone(),
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage {
channel_id,
data: err
},
},
},
shutdown_finish: None,
}
}
#[inline]
fn ignore_no_close(err: String) -> Self {
Self {
err: LightningError {
err,
action: msgs::ErrorAction::IgnoreError,
},
shutdown_finish: None,
}
}
#[inline]
fn from_no_close(err: msgs::LightningError) -> Self {
Self { err, shutdown_finish: None }
}
#[inline]
fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
Self {
err: LightningError {
err: err.clone(),
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage {
channel_id,
data: err
},
},
},
shutdown_finish: Some((shutdown_res, channel_update)),
}
}
#[inline]
fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
Self {
err: match err {
ChannelError::Ignore(msg) => LightningError {
err: msg,
action: msgs::ErrorAction::IgnoreError,
},
ChannelError::Close(msg) => LightningError {
err: msg.clone(),
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage {
channel_id,
data: msg
},
},
},
ChannelError::CloseDelayBroadcast(msg) => LightningError {
err: msg.clone(),
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage {
channel_id,
data: msg
},
},
},
},
shutdown_finish: None,
}
}
}
/// We hold back HTLCs we intend to relay for a random interval greater than this (see
/// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
/// This provides some limited amount of privacy. Ideally this would range from somewhere like one
/// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
2017-12-25 01:05:27 -05:00
/// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
/// be sent in the order they appear in the return value, however sometimes the order needs to be
/// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
/// they were originally sent). In those cases, this enum is also returned.
#[derive(Clone, PartialEq)]
pub(super) enum RAACommitmentOrder {
/// Send the CommitmentUpdate messages first
CommitmentFirst,
/// Send the RevokeAndACK message first
RevokeAndACKFirst,
}
// Note this is only exposed in cfg(test):
pub(super) struct ChannelHolder<Signer: Sign> {
pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
pub(super) short_to_id: HashMap<u64, [u8; 32]>,
2017-12-25 01:05:27 -05:00
/// short channel id -> forward infos. Key of 0 means payments received
/// Note that while this is held in the same mutex as the channels themselves, no consistency
2019-01-24 16:41:51 +02:00
/// guarantees are made about the existence of a channel with the short id here, nor the short
/// ids in the PendingHTLCInfo!
pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
/// (payment_hash, payment_secret) -> Vec<HTLCs> for tracking HTLCs that
/// were to us and can be failed/claimed by the user
/// Note that while this is held in the same mutex as the channels themselves, no consistency
/// guarantees are made about the channels given here actually existing anymore by the time you
/// go to read them!
claimable_htlcs: HashMap<(PaymentHash, Option<PaymentSecret>), Vec<ClaimableHTLC>>,
/// Messages to send to peers - pushed to in the same lock that they are generated in (except
/// for broadcast messages, where ordering isn't as strict).
pub(super) pending_msg_events: Vec<MessageSendEvent>,
}
2017-12-25 01:05:27 -05:00
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
/// Events which we process internally but cannot be procsesed immediately at the generation site
/// for some reason. They are handled in timer_tick_occurred, so may be processed with
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
/// quite some time lag.
enum BackgroundEvent {
/// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
/// commitment transaction.
ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
}
/// State we hold per-peer. In the future we should put channels in here, but for now we only hold
/// the latest Init features we heard from the peer.
struct PeerState {
latest_features: InitFeatures,
}
/// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
/// actually ours and not some duplicate HTLC sent to us by a node along the route.
///
/// For users who don't want to bother doing their own payment preimage storage, we also store that
/// here.
struct PendingInboundPayment {
/// The payment secret that the sender must use for us to accept this payment
payment_secret: PaymentSecret,
/// Time at which this HTLC expires - blocks with a header time above this value will result in
/// this payment being removed.
expiry_time: u64,
// Other required attributes of the payment, optionally enforced:
payment_preimage: Option<PaymentPreimage>,
min_value_msat: Option<u64>,
}
/// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
/// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
/// lifetimes). Other times you can afford a reference, which is more efficient, in which case
/// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
/// issues such as overly long function definitions. Note that the ChannelManager can take any
/// type that implements KeysInterface for its keys manager, but this type alias chooses the
/// concrete type of the KeysManager.
pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
/// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
/// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
/// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
/// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
/// But if this is not necessary, using a reference is more efficient. Defining these type aliases
/// helps with issues such as long function definitions. Note that the ChannelManager can take any
/// type that implements KeysInterface for its keys manager, but this type alias chooses the
/// concrete type of the KeysManager.
pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
2017-12-25 01:05:27 -05:00
/// Manager which keeps track of a number of channels and sends messages to the appropriate
/// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
///
2017-12-25 01:05:27 -05:00
/// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
/// to individual Channels.
///
/// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
/// all peers during write/read (though does not modify this instance, only the instance being
/// serialized). This will result in any channels which have not yet exchanged funding_created (ie
/// called funding_transaction_generated for outbound channels).
///
/// Note that you can be a bit lazier about writing out ChannelManager than you can be with
/// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
/// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
/// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
/// the serialization process). If the deserialized version is out-of-date compared to the
/// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
/// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
///
/// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
/// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
/// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
/// block_connected() to step towards your best block) upon deserialization before using the
/// object!
///
/// Note that ChannelManager is responsible for tracking liveness of its channels and generating
/// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
/// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
/// offline for a full minute. In order to track this, you must call
/// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
///
/// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
/// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
/// essentially you should default to using a SimpleRefChannelManager, and use a
/// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
/// you're using lightning-net-tokio.
pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
default_configuration: UserConfig,
genesis_hash: BlockHash,
fee_estimator: F,
chain_monitor: M,
tx_broadcaster: T,
2017-12-25 01:05:27 -05:00
#[cfg(test)]
pub(super) best_block: RwLock<BestBlock>,
#[cfg(not(test))]
best_block: RwLock<BestBlock>,
secp_ctx: Secp256k1<secp256k1::All>,
2017-12-25 01:05:27 -05:00
#[cfg(any(test, feature = "_test_utils"))]
pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
#[cfg(not(any(test, feature = "_test_utils")))]
channel_state: Mutex<ChannelHolder<Signer>>,
/// Storage for PaymentSecrets and any requirements on future inbound payments before we will
/// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
/// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
/// after we generate a PaymentReceived upon receipt of all MPP parts.
/// Locked *after* channel_state.
pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
2017-12-25 01:05:27 -05:00
our_network_key: SecretKey,
our_network_pubkey: PublicKey,
2017-12-25 01:05:27 -05:00
/// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
/// value increases strictly since we don't assume access to a time source.
last_node_announcement_serial: AtomicUsize,
/// The highest block timestamp we've seen, which is usually a good guess at the current time.
/// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
/// very far in the past, and can only ever be up to two hours in the future.
highest_seen_timestamp: AtomicUsize,
/// The bulk of our storage will eventually be here (channels and message queues and the like).
/// If we are connected to a peer we always at least have an entry here, even if no channels
/// are currently open with that peer.
/// Because adding or removing an entry is rare, we usually take an outer read lock and then
/// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
/// new channel.
per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
2017-12-25 01:05:27 -05:00
pending_events: Mutex<Vec<events::Event>>,
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
pending_background_events: Mutex<Vec<BackgroundEvent>>,
/// Used when we have to take a BIG lock to make sure everything is self-consistent.
/// Essentially just when we're serializing ourselves out.
/// Taken first everywhere where we are making changes before any other locks.
/// When acquiring this lock in read mode, rather than acquiring it directly, call
/// `PersistenceNotifierGuard::new(..)` and pass the lock to it, to ensure the PersistenceNotifier
/// the lock contains sends out a notification when the lock is released.
total_consistency_lock: RwLock<()>,
persistence_notifier: PersistenceNotifier,
keys_manager: K,
logger: L,
2017-12-25 01:05:27 -05:00
}
/// Chain-related parameters used to construct a new `ChannelManager`.
///
/// Typically, the block-specific parameters are derived from the best block hash for the network,
/// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
/// are not needed when deserializing a previously constructed `ChannelManager`.
pub struct ChainParameters {
/// The network for determining the `chain_hash` in Lightning messages.
pub network: Network,
/// The hash and height of the latest block successfully connected.
///
/// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
pub best_block: BestBlock,
}
/// The best known block as identified by its hash and height.
2021-04-06 11:34:17 -07:00
#[derive(Clone, Copy)]
pub struct BestBlock {
block_hash: BlockHash,
height: u32,
}
impl BestBlock {
/// Returns the best block from the genesis of the given network.
pub fn from_genesis(network: Network) -> Self {
BestBlock {
block_hash: genesis_block(network).header.block_hash(),
height: 0,
}
}
/// Returns the best block as identified by the given block hash and height.
pub fn new(block_hash: BlockHash, height: u32) -> Self {
BestBlock { block_hash, height }
}
/// Returns the best block hash.
pub fn block_hash(&self) -> BlockHash { self.block_hash }
/// Returns the best block height.
pub fn height(&self) -> u32 { self.height }
}
/// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
/// desirable to notify any listeners on `await_persistable_update_timeout`/
/// `await_persistable_update` that new updates are available for persistence. Therefore, this
/// struct is responsible for locking the total consistency lock and, upon going out of scope,
/// sending the aforementioned notification (since the lock being released indicates that the
/// updates are ready for persistence).
struct PersistenceNotifierGuard<'a> {
persistence_notifier: &'a PersistenceNotifier,
// We hold onto this result so the lock doesn't get released immediately.
_read_guard: RwLockReadGuard<'a, ()>,
}
impl<'a> PersistenceNotifierGuard<'a> {
fn new(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> Self {
let read_guard = lock.read().unwrap();
Self {
persistence_notifier: notifier,
_read_guard: read_guard,
}
}
}
impl<'a> Drop for PersistenceNotifierGuard<'a> {
fn drop(&mut self) {
self.persistence_notifier.notify();
}
}
/// The amount of time in blocks we require our counterparty wait to claim their money (ie time
/// between when we, or our watchtower, must check for them having broadcast a theft transaction).
///
/// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
///
/// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
/// The amount of time in blocks we're willing to wait to claim money back to us. This matches
/// the maximum required amount in lnd as of March 2021.
pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
/// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
/// HTLC's CLTV. The current default represents roughly six hours of blocks at six blocks/hour.
///
/// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
///
/// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
// This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
// i.e. the node we forwarded the payment on to should always have enough room to reliably time out
// the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
// CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6 * 6;
pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
2017-12-25 01:05:27 -05:00
// Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
// ie that if the next-hop peer fails the HTLC within
// LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
// then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
// failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
// LATENCY_GRACE_PERIOD_BLOCKS.
#[deny(const_err)]
#[allow(dead_code)]
const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
// Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See
// ChannelMontior::would_broadcast_at_height for a description of why this is needed.
#[deny(const_err)]
#[allow(dead_code)]
const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
/// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
#[derive(Clone)]
pub struct ChannelDetails {
/// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
/// thereafter this is the txid of the funding transaction xor the funding transaction output).
/// Note that this means this value is *not* persistent - it can change once during the
/// lifetime of the channel.
pub channel_id: [u8; 32],
/// The position of the funding transaction in the chain. None if the funding transaction has
/// not yet been confirmed and the channel fully opened.
pub short_channel_id: Option<u64>,
/// The node_id of our counterparty
pub remote_network_id: PublicKey,
/// The Features the channel counterparty provided upon last connection.
/// Useful for routing as it is the most up-to-date copy of the counterparty's features and
/// many routing-relevant features are present in the init context.
pub counterparty_features: InitFeatures,
/// The value, in satoshis, of this channel as appears in the funding output
pub channel_value_satoshis: u64,
/// The user_id passed in to create_channel, or 0 if the channel was inbound.
pub user_id: u64,
/// The available outbound capacity for sending HTLCs to the remote peer. This does not include
/// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
/// available for inclusion in new outbound HTLCs). This further does not include any pending
/// outgoing HTLCs which are awaiting some other resolution to be sent.
pub outbound_capacity_msat: u64,
/// The available inbound capacity for the remote peer to send HTLCs to us. This does not
/// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
/// available for inclusion in new inbound HTLCs).
/// Note that there are some corner cases not fully handled here, so the actual available
/// inbound capacity may be slightly higher than this.
pub inbound_capacity_msat: u64,
/// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
/// the peer is connected, and (c) no monitor update failure is pending resolution.
pub is_live: bool,
/// Information on the fees and requirements that the counterparty requires when forwarding
/// payments to us through this channel.
pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
}
/// If a payment fails to send, it can be in one of several states. This enum is returned as the
/// Err() type describing which state the payment is in, see the description of individual enum
/// states for more.
#[derive(Clone, Debug)]
pub enum PaymentSendFailure {
/// A parameter which was passed to send_payment was invalid, preventing us from attempting to
/// send the payment at all. No channel state has been changed or messages sent to peers, and
/// once you've changed the parameter at error, you can freely retry the payment in full.
ParameterError(APIError),
/// A parameter in a single path which was passed to send_payment was invalid, preventing us
/// from attempting to send the payment at all. No channel state has been changed or messages
/// sent to peers, and once you've changed the parameter at error, you can freely retry the
/// payment in full.
///
/// The results here are ordered the same as the paths in the route object which was passed to
/// send_payment.
PathParameterError(Vec<Result<(), APIError>>),
/// All paths which were attempted failed to send, with no channel state change taking place.
/// You can freely retry the payment in full (though you probably want to do so over different
/// paths than the ones selected).
AllFailedRetrySafe(Vec<APIError>),
/// Some paths which were attempted failed to send, though possibly not all. At least some
/// paths have irrevocably committed to the HTLC and retrying the payment in full would result
/// in over-/re-payment.
///
/// The results here are ordered the same as the paths in the route object which was passed to
/// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
/// retried (though there is currently no API with which to do so).
///
/// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
/// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
/// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
/// with the latest update_id.
PartialFailure(Vec<Result<(), APIError>>),
}
macro_rules! handle_error {
($self: ident, $internal: expr, $counterparty_node_id: expr) => {
match $internal {
Ok(msg) => Ok(msg),
Err(MsgHandleErrInternal { err, shutdown_finish }) => {
#[cfg(debug_assertions)]
{
// In testing, ensure there are no deadlocks where the lock is already held upon
// entering the macro.
assert!($self.channel_state.try_lock().is_ok());
}
let mut msg_events = Vec::with_capacity(2);
if let Some((shutdown_res, update_option)) = shutdown_finish {
$self.finish_force_close_channel(shutdown_res);
if let Some(update) = update_option {
msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
}
log_error!($self.logger, "{}", err.err);
if let msgs::ErrorAction::IgnoreError = err.action {
} else {
msg_events.push(events::MessageSendEvent::HandleError {
node_id: $counterparty_node_id,
action: err.action.clone()
});
}
if !msg_events.is_empty() {
$self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
}
// Return error in case higher-API need one
Err(err)
},
}
}
}
macro_rules! break_chan_entry {
($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
match $res {
Ok(res) => res,
Err(ChannelError::Ignore(msg)) => {
break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
},
Err(ChannelError::Close(msg)) => {
log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
let (channel_id, mut chan) = $entry.remove_entry();
if let Some(short_id) = chan.get_short_channel_id() {
$channel_state.short_to_id.remove(&short_id);
}
break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
},
Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
}
}
}
macro_rules! try_chan_entry {
($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
match $res {
Ok(res) => res,
Err(ChannelError::Ignore(msg)) => {
return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
},
Err(ChannelError::Close(msg)) => {
log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
let (channel_id, mut chan) = $entry.remove_entry();
if let Some(short_id) = chan.get_short_channel_id() {
$channel_state.short_to_id.remove(&short_id);
}
return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
},
Err(ChannelError::CloseDelayBroadcast(msg)) => {
log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
let (channel_id, mut chan) = $entry.remove_entry();
if let Some(short_id) = chan.get_short_channel_id() {
$channel_state.short_to_id.remove(&short_id);
}
let shutdown_res = chan.force_shutdown(false);
return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
}
}
}
}
macro_rules! handle_monitor_err {
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
};
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
match $err {
ChannelMonitorUpdateErr::PermanentFailure => {
log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
let (channel_id, mut chan) = $entry.remove_entry();
if let Some(short_id) = chan.get_short_channel_id() {
$channel_state.short_to_id.remove(&short_id);
}
// TODO: $failed_fails is dropped here, which will cause other channels to hit the
// chain in a confused state! We need to move them into the ChannelMonitor which
// will be responsible for failing backwards once things confirm on-chain.
// It's ok that we drop $failed_forwards here - at this point we'd rather they
// broadcast HTLC-Timeout and pay the associated fees to get their funds back than
// us bother trying to claim it just to forward on to another peer. If we're
// splitting hairs we'd prefer to claim payments that were to us, but we haven't
// given up the preimage yet, so might as well just wait until the payment is
// retried, avoiding the on-chain fees.
let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
res
},
ChannelMonitorUpdateErr::TemporaryFailure => {
log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
log_bytes!($entry.key()[..]),
if $resend_commitment && $resend_raa {
match $action_type {
RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
}
} else if $resend_commitment { "commitment" }
else if $resend_raa { "RAA" }
else { "nothing" },
(&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
(&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
if !$resend_commitment {
debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
}
if !$resend_raa {
debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
}
$entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key()))
},
}
}
}
macro_rules! return_monitor_err {
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
};
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
}
}
// Does not break in case of TemporaryFailure!
macro_rules! maybe_break_monitor_err {
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
(e, ChannelMonitorUpdateErr::PermanentFailure) => {
break e;
},
(_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
}
}
}
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
/// Constructs a new ChannelManager to hold several channels and route between them.
///
/// This is the main "logic hub" for all channel-related actions, and implements
/// ChannelMessageHandler.
///
2017-12-25 01:05:27 -05:00
/// Non-proportional fees are fixed according to our risk using the provided fee estimator.
///
/// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
///
/// Users need to notify the new ChannelManager when a new block is connected or
/// disconnected using its `block_connected` and `block_disconnected` methods, starting
/// from after `params.latest_hash`.
pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
let mut secp_ctx = Secp256k1::new();
secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
2017-12-25 01:05:27 -05:00
ChannelManager {
default_configuration: config.clone(),
genesis_hash: genesis_block(params.network).header.block_hash(),
fee_estimator: fee_est,
chain_monitor,
2018-03-26 16:48:18 -04:00
tx_broadcaster,
2017-12-25 01:05:27 -05:00
best_block: RwLock::new(params.best_block),
2017-12-25 01:05:27 -05:00
channel_state: Mutex::new(ChannelHolder{
by_id: HashMap::new(),
short_to_id: HashMap::new(),
2017-12-25 01:05:27 -05:00
forward_htlcs: HashMap::new(),
claimable_htlcs: HashMap::new(),
pending_msg_events: Vec::new(),
2017-12-25 01:05:27 -05:00
}),
pending_inbound_payments: Mutex::new(HashMap::new()),
our_network_key: keys_manager.get_node_secret(),
our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
secp_ctx,
last_node_announcement_serial: AtomicUsize::new(0),
highest_seen_timestamp: AtomicUsize::new(0),
per_peer_state: RwLock::new(HashMap::new()),
pending_events: Mutex::new(Vec::new()),
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
pending_background_events: Mutex::new(Vec::new()),
total_consistency_lock: RwLock::new(()),
persistence_notifier: PersistenceNotifier::new(),
keys_manager,
logger,
}
2017-12-25 01:05:27 -05:00
}
/// Gets the current configuration applied to all new channels, as
pub fn get_current_default_configuration(&self) -> &UserConfig {
&self.default_configuration
}
/// Creates a new outbound channel to the given remote node and with the given value.
///
/// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
/// tracking of which events correspond with which create_channel call. Note that the
/// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
/// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
/// otherwise ignored.
///
/// If successful, will generate a SendOpenChannel message event, so you should probably poll
/// PeerManager::process_events afterwards.
///
/// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
/// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
if channel_value_satoshis < 1000 {
return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
}
let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
let res = channel.get_open_channel(self.genesis_hash.clone());
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
// We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
debug_assert!(&self.total_consistency_lock.try_write().is_err());
let mut channel_state = self.channel_state.lock().unwrap();
match channel_state.by_id.entry(channel.channel_id()) {
hash_map::Entry::Occupied(_) => {
if cfg!(feature = "fuzztarget") {
return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
} else {
panic!("RNG is bad???");
}
},
hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
2017-12-25 01:05:27 -05:00
}
channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
node_id: their_network_key,
msg: res,
});
Ok(())
2017-12-25 01:05:27 -05:00
}
fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
let mut res = Vec::new();
{
let channel_state = self.channel_state.lock().unwrap();
res.reserve(channel_state.by_id.len());
for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
res.push(ChannelDetails {
channel_id: (*channel_id).clone(),
short_channel_id: channel.get_short_channel_id(),
remote_network_id: channel.get_counterparty_node_id(),
counterparty_features: InitFeatures::empty(),
channel_value_satoshis: channel.get_value_satoshis(),
inbound_capacity_msat,
outbound_capacity_msat,
user_id: channel.get_user_id(),
is_live: channel.is_live(),
counterparty_forwarding_info: channel.counterparty_forwarding_info(),
});
}
}
let per_peer_state = self.per_peer_state.read().unwrap();
for chan in res.iter_mut() {
if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
}
}
res
}
/// Gets the list of open channels, in random order. See ChannelDetail field documentation for
/// more information.
pub fn list_channels(&self) -> Vec<ChannelDetails> {
self.list_channels_with_filter(|_| true)
}
/// Gets the list of usable channels, in random order. Useful as an argument to
/// get_route to ensure non-announced channels are used.
///
/// These are guaranteed to have their is_live value set to true, see the documentation for
/// ChannelDetails::is_live for more info on exactly what the criteria are.
pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
// Note we use is_live here instead of usable which leads to somewhat confused
// internal/external nomenclature, but that's ok cause that's probably what the user
// really wanted anyway.
self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
}
/// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
/// will be accepted on the given channel, and after additional timeout/the closing of all
/// pending HTLCs, the channel will be closed on chain.
///
/// May generate a SendShutdown message event on success, which should be relayed.
2018-09-26 00:32:30 +09:00
pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let (mut failed_htlcs, chan_option) = {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(channel_id.clone()) {
hash_map::Entry::Occupied(mut chan_entry) => {
let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
node_id: chan_entry.get().get_counterparty_node_id(),
msg: shutdown_msg
});
if chan_entry.get().is_shutdown() {
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
(failed_htlcs, Some(chan_entry.remove_entry().1))
} else { (failed_htlcs, None) }
},
hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
}
};
for htlc_source in failed_htlcs.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
2018-07-22 23:03:31 -04:00
let chan_update = if let Some(chan) = chan_option {
if let Ok(update) = self.get_channel_update(&chan) {
2018-07-22 23:03:31 -04:00
Some(update)
} else { None }
} else { None };
if let Some(update) = chan_update {
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2018-07-22 23:03:31 -04:00
msg: update
});
}
2018-07-22 23:03:31 -04:00
Ok(())
}
#[inline]
fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
let (monitor_update_option, mut failed_htlcs) = shutdown_res;
log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
for htlc_source in failed_htlcs.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
if let Some((funding_txo, monitor_update)) = monitor_update_option {
// There isn't anything we can do if we get an update failure - we're already
// force-closing. The monitor update on the required in-memory copy should broadcast
// the latest local state, which is the best we can do anyway. Thus, it is safe to
// ignore the result here.
let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
}
}
fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
let mut chan = {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
if let Some(node_id) = peer_node_id {
if chan.get().get_counterparty_node_id() != *node_id {
return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
}
}
if let Some(short_id) = chan.get().get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
chan.remove_entry().1
} else {
return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
}
};
log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
self.finish_force_close_channel(chan.force_shutdown(true));
if let Ok(update) = self.get_channel_update(&chan) {
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
Ok(chan.get_counterparty_node_id())
}
/// Force closes a channel, immediately broadcasting the latest local commitment transaction to
/// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
match self.force_close_channel_with_peer(channel_id, None) {
Ok(counterparty_node_id) => {
self.channel_state.lock().unwrap().pending_msg_events.push(
events::MessageSendEvent::HandleError {
node_id: counterparty_node_id,
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
},
}
);
Ok(())
},
Err(e) => Err(e)
}
}
/// Force close all channels, immediately broadcasting the latest local commitment transaction
/// for each to the chain and rejecting new HTLCs on each.
pub fn force_close_all_channels(&self) {
for chan in self.list_channels() {
let _ = self.force_close_channel(&chan.channel_id);
}
}
fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
macro_rules! return_malformed_err {
($msg: expr, $err_code: expr) => {
{
log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
channel_id: msg.channel_id,
htlc_id: msg.htlc_id,
sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
failure_code: $err_code,
})), self.channel_state.lock().unwrap());
}
}
}
if let Err(_) = msg.onion_routing_packet.public_key {
return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
}
let shared_secret = {
let mut arr = [0; 32];
arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
arr
};
let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
if msg.onion_routing_packet.version != 0 {
//TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
//sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2019-01-24 16:41:51 +02:00
//the hash doesn't really serve any purpose - in the case of hashing all data, the
//receiving node would have to brute force to figure out which version was put in the
//packet by the node that send us the message, in the case of hashing the hop_data, the
//node knows the HMAC matched, so they already know what is there...
return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
}
let mut hmac = HmacEngine::<Sha256>::new(&mu);
hmac.input(&msg.onion_routing_packet.hop_data);
hmac.input(&msg.payment_hash.0[..]);
if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
}
let mut channel_state = None;
macro_rules! return_err {
($msg: expr, $err_code: expr, $data: expr) => {
{
log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
if channel_state.is_none() {
channel_state = Some(self.channel_state.lock().unwrap());
}
return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
channel_id: msg.channel_id,
htlc_id: msg.htlc_id,
reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
})), channel_state.unwrap());
}
}
}
let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
let (next_hop_data, next_hop_hmac) = {
match msgs::OnionHopData::read(&mut chacha_stream) {
Err(err) => {
let error_code = match err {
msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
msgs::DecodeError::UnknownRequiredFeature|
msgs::DecodeError::InvalidValue|
msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
_ => 0x2000 | 2, // Should never happen
};
return_err!("Unable to decode our hop data", error_code, &[0;0]);
},
Ok(msg) => {
let mut hmac = [0; 32];
if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
}
(msg, hmac)
},
}
};
let pending_forward_info = if next_hop_hmac == [0; 32] {
#[cfg(test)]
{
// In tests, make sure that the initial onion pcket data is, at least, non-0.
// We could do some fancy randomness test here, but, ehh, whatever.
// This checks for the issue where you can calculate the path length given the
// onion data as all the path entries that the originator sent will be here
// as-is (and were originally 0s).
// Of course reverse path calculation is still pretty easy given naive routing
// algorithms, but this fixes the most-obvious case.
let mut next_bytes = [0; 32];
chacha_stream.read_exact(&mut next_bytes).unwrap();
assert_ne!(next_bytes[..], [0; 32][..]);
chacha_stream.read_exact(&mut next_bytes).unwrap();
assert_ne!(next_bytes[..], [0; 32][..]);
}
// OUR PAYMENT!
2018-10-14 22:30:21 +09:00
// final_expiry_too_soon
// We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
// HTLC_FAIL_BACK_BUFFER blocks to go.
// Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
// before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2018-10-14 22:30:21 +09:00
return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
}
// final_incorrect_htlc_amount
if next_hop_data.amt_to_forward > msg.amount_msat {
return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
}
2018-10-14 22:30:21 +09:00
// final_incorrect_cltv_expiry
if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
}
let payment_data = match next_hop_data.format {
msgs::OnionHopDataFormat::Legacy { .. } => None,
msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
};
// Note that we could obviously respond immediately with an update_fulfill_htlc
// message, however that would leak that we are the recipient of this payment, so
// instead we stay symmetric with the forwarding case, only responding (after a
// delay) once they've send us a commitment_signed!
PendingHTLCStatus::Forward(PendingHTLCInfo {
routing: PendingHTLCRouting::Receive {
payment_data,
incoming_cltv_expiry: msg.cltv_expiry,
},
payment_hash: msg.payment_hash.clone(),
incoming_shared_secret: shared_secret,
amt_to_forward: next_hop_data.amt_to_forward,
outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
})
} else {
let mut new_packet_data = [0; 20*65];
let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
#[cfg(debug_assertions)]
{
// Check two things:
// a) that the behavior of our stream here will return Ok(0) even if the TLV
// read above emptied out our buffer and the unwrap() wont needlessly panic
// b) that we didn't somehow magically end up with extra data.
let mut t = [0; 1];
debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
}
// Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
// fill the onion hop data we'll forward to our next-hop peer.
chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
let blinding_factor = {
let mut sha = Sha256::engine();
sha.input(&new_pubkey.serialize()[..]);
sha.input(&shared_secret);
Sha256::from_engine(sha).into_inner()
};
let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
Err(e)
} else { Ok(new_pubkey) };
let outgoing_packet = msgs::OnionPacket {
version: 0,
public_key,
hop_data: new_packet_data,
hmac: next_hop_hmac.clone(),
};
let short_channel_id = match next_hop_data.format {
msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
msgs::OnionHopDataFormat::FinalNode { .. } => {
return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
},
};
PendingHTLCStatus::Forward(PendingHTLCInfo {
routing: PendingHTLCRouting::Forward {
onion_packet: outgoing_packet,
short_channel_id,
},
payment_hash: msg.payment_hash.clone(),
incoming_shared_secret: shared_secret,
amt_to_forward: next_hop_data.amt_to_forward,
outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
})
};
channel_state = Some(self.channel_state.lock().unwrap());
if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
// If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
// with a short_channel_id of 0. This is important as various things later assume
// short_channel_id is non-0 in any ::Forward.
if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
let forwarding_id = match id_option {
2018-10-14 22:30:21 +09:00
None => { // unknown_next_peer
return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
},
Some(id) => id.clone(),
};
2018-10-14 22:30:21 +09:00
if let Some((err, code, chan_update)) = loop {
let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
2018-10-14 22:30:21 +09:00
// Note that we could technically not return an error yet here and just hope
// that the connection is reestablished or monitor updated by the time we get
// around to doing the actual forward, but better to fail early if we can and
// hopefully an attacker trying to path-trace payments cannot make this occur
// on a small/per-node/per-channel scale.
2018-10-14 22:30:21 +09:00
if !chan.is_live() { // channel_disabled
break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
}
if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2018-10-14 22:30:21 +09:00
break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
}
let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
2018-10-14 22:30:21 +09:00
if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
}
if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
2018-10-14 22:30:21 +09:00
break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
}
let cur_height = self.best_block.read().unwrap().height() + 1;
// Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
// packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2018-10-14 22:30:21 +09:00
break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
}
if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
break Some(("CLTV expiry is too far in the future", 21, None));
}
2020-04-09 22:04:30 -04:00
// In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
// But, to be safe against policy reception, we use a longuer delay.
if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
}
2018-10-14 22:30:21 +09:00
break None;
}
{
let mut res = Vec::with_capacity(8 + 128);
if let Some(chan_update) = chan_update {
if code == 0x1000 | 11 || code == 0x1000 | 12 {
res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
}
else if code == 0x1000 | 13 {
res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
}
else if code == 0x1000 | 20 {
2020-06-28 14:43:10 +03:00
// TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
res.extend_from_slice(&byte_utils::be16_to_array(0));
}
2018-10-14 22:30:21 +09:00
res.extend_from_slice(&chan_update.encode_with_len()[..]);
}
2018-10-14 22:30:21 +09:00
return_err!(err, code, &res[..]);
}
}
}
(pending_forward_info, channel_state.unwrap())
}
2017-12-25 01:05:27 -05:00
/// only fails if the channel does not yet have an assigned short_id
/// May be called with channel_state already locked!
fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2017-12-25 01:05:27 -05:00
let short_channel_id = match chan.get_short_channel_id() {
None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2017-12-25 01:05:27 -05:00
Some(id) => id,
};
let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2017-12-25 01:05:27 -05:00
let unsigned = msgs::UnsignedChannelUpdate {
chain_hash: self.genesis_hash,
short_channel_id,
timestamp: chan.get_update_time_counter(),
2020-06-28 14:43:10 +03:00
flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
cltv_expiry_delta: chan.get_cltv_expiry_delta(),
htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
fee_proportional_millionths: chan.get_fee_proportional_millionths(),
excess_data: Vec::new(),
2017-12-25 01:05:27 -05:00
};
let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
2017-12-25 01:05:27 -05:00
Ok(msgs::ChannelUpdate {
signature: sig,
contents: unsigned
})
}
// Only public for testing, this should otherwise never be called direcly
pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
let prng_seed = self.keys_manager.get_secure_random_bytes();
let session_priv = SecretKey::from_slice(&self.keys_manager.get_secure_random_bytes()[..]).expect("RNG is busted");
let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
.map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
if onion_utils::route_size_insane(&onion_payloads) {
return Err(APIError::RouteError{err: "Route size too large considering onion data"});
}
let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let err: Result<(), _> = loop {
let mut channel_lock = self.channel_state.lock().unwrap();
let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
Some(id) => id.clone(),
};
let channel_state = &mut *channel_lock;
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
match {
if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
}
if !chan.get().is_live() {
return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
}
break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
path: path.clone(),
session_priv: session_priv.clone(),
first_hop_htlc_msat: htlc_msat,
}, onion_packet, &self.logger), channel_state, chan)
} {
Some((update_add, commitment_signed, monitor_update)) => {
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
// Note that MonitorUpdateFailed here indicates (per function docs)
// that we will resend the commitment update once monitor updating
// is restored. Therefore, we must return an error indicating that
// it is unsafe to retry the payment wholesale, which we do in the
// send_payment check for MonitorUpdateFailed, below.
return Err(APIError::MonitorUpdateFailed);
}
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: path.first().unwrap().pubkey,
updates: msgs::CommitmentUpdate {
update_add_htlcs: vec![update_add],
update_fulfill_htlcs: Vec::new(),
update_fail_htlcs: Vec::new(),
update_fail_malformed_htlcs: Vec::new(),
update_fee: None,
commitment_signed,
},
});
},
None => {},
}
} else { unreachable!(); }
return Ok(());
};
match handle_error!(self, err, path.first().unwrap().pubkey) {
Ok(_) => unreachable!(),
Err(e) => {
Err(APIError::ChannelUnavailable { err: e.err })
},
}
}
/// Sends a payment along a given route.
///
/// Value parameters are provided via the last hop in route, see documentation for RouteHop
/// fields for more info.
///
/// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
/// payment), we don't do anything to stop you! We always try to ensure that if the provided
/// next hop knows the preimage to payment_hash they can claim an additional amount as
/// specified in the last hop in the route! Thus, you should probably do your own
/// payment_preimage tracking (which you should already be doing as they represent "proof of
/// payment") and prevent double-sends yourself.
///
/// May generate SendHTLCs message(s) event on success, which should be relayed.
///
/// Each path may have a different return value, and PaymentSendValue may return a Vec with
/// each entry matching the corresponding-index entry in the route paths, see
/// PaymentSendFailure for more info.
///
/// In general, a path may raise:
/// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
/// node public key) is specified.
/// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
/// (including due to previous monitor update failure or new permanent monitor update
/// failure).
/// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
/// relevant updates.
///
/// Note that depending on the type of the PaymentSendFailure the HTLC may have been
/// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
/// different route unless you intend to pay twice!
///
/// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
/// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
/// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
/// must not contain multiple paths as multi-path payments require a recipient-provided
/// payment_secret.
/// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
/// bit set (either as required or as available). If multiple paths are present in the Route,
/// we assume the invoice had the basic_mpp feature set.
pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
if route.paths.len() < 1 {
return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
}
if route.paths.len() > 10 {
// This limit is completely arbitrary - there aren't any real fundamental path-count
// limits. After we support retrying individual paths we should likely bump this, but
// for now more than 10 paths likely carries too much one-path failure.
return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
2017-12-25 01:05:27 -05:00
}
let mut total_value = 0;
let our_node_id = self.get_our_node_id();
let mut path_errs = Vec::with_capacity(route.paths.len());
'path_check: for path in route.paths.iter() {
if path.len() < 1 || path.len() > 20 {
path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
continue 'path_check;
}
for (idx, hop) in path.iter().enumerate() {
if idx != path.len() - 1 && hop.pubkey == our_node_id {
path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
continue 'path_check;
}
}
total_value += path.last().unwrap().fee_msat;
path_errs.push(Ok(()));
}
if path_errs.iter().any(|e| e.is_err()) {
return Err(PaymentSendFailure::PathParameterError(path_errs));
}
2017-12-25 01:05:27 -05:00
let cur_height = self.best_block.read().unwrap().height() + 1;
let mut results = Vec::new();
for path in route.paths.iter() {
results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
}
let mut has_ok = false;
let mut has_err = false;
for res in results.iter() {
if res.is_ok() { has_ok = true; }
if res.is_err() { has_err = true; }
if let &Err(APIError::MonitorUpdateFailed) = res {
// MonitorUpdateFailed is inherently unsafe to retry, so we call it a
// PartialFailure.
has_err = true;
has_ok = true;
break;
}
}
if has_err && has_ok {
Err(PaymentSendFailure::PartialFailure(results))
} else if has_err {
Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
} else {
Ok(())
}
2017-12-25 01:05:27 -05:00
}
/// Handles the generation of a funding transaction, optionally (for tests) with a function
/// which checks the correctness of the funding transaction given the associated channel.
fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
let (chan, msg) = {
let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
Some(mut chan) => {
let funding_txo = find_funding_output(&chan, &funding_transaction)?;
(chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
.map_err(|e| if let ChannelError::Close(msg) = e {
MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
} else { unreachable!(); })
, chan)
},
None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
};
match handle_error!(self, res, chan.get_counterparty_node_id()) {
Ok(funding_msg) => {
(chan, funding_msg)
},
Err(_) => { return Err(APIError::ChannelUnavailable {
err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
}) },
2017-12-25 01:05:27 -05:00
}
};
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
node_id: chan.get_counterparty_node_id(),
msg,
});
match channel_state.by_id.entry(chan.channel_id()) {
hash_map::Entry::Occupied(_) => {
panic!("Generated duplicate funding txid?");
},
hash_map::Entry::Vacant(e) => {
e.insert(chan);
}
}
Ok(())
2017-12-25 01:05:27 -05:00
}
#[cfg(test)]
pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
Ok(OutPoint { txid: tx.txid(), index: output_index })
})
}
/// Call this upon creation of a funding transaction for the given channel.
///
/// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
/// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
///
/// Panics if a funding transaction has already been provided for this channel.
///
/// May panic if the output found in the funding transaction is duplicative with some other
/// channel (note that this should be trivially prevented by using unique funding transaction
/// keys per-channel).
///
/// Do NOT broadcast the funding transaction yourself. When we have safely received our
/// counterparty's signature the funding transaction will automatically be broadcast via the
/// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
///
/// Note that this includes RBF or similar transaction replacement strategies - lightning does
/// not currently support replacing a funding transaction on an existing channel. Instead,
/// create a new channel with a conflicting funding transaction.
pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
for inp in funding_transaction.input.iter() {
if inp.witness.is_empty() {
return Err(APIError::APIMisuseError {
err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
});
}
}
self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
let mut output_index = None;
let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
for (idx, outp) in tx.output.iter().enumerate() {
if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
if output_index.is_some() {
return Err(APIError::APIMisuseError {
err: "Multiple outputs matched the expected script and value".to_owned()
});
}
if idx > u16::max_value() as usize {
return Err(APIError::APIMisuseError {
err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
});
}
output_index = Some(idx as u16);
}
}
if output_index.is_none() {
return Err(APIError::APIMisuseError {
err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
});
}
Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
})
}
fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
if !chan.should_announce() {
log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
return None
}
2017-12-25 01:05:27 -05:00
let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
Ok(res) => res,
Err(_) => return None, // Only in case of state precondition violations eg channel is closing
};
let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2017-12-25 01:05:27 -05:00
Some(msgs::AnnouncementSignatures {
2017-12-25 01:05:27 -05:00
channel_id: chan.channel_id(),
short_channel_id: chan.get_short_channel_id().unwrap(),
node_signature: our_node_sig,
bitcoin_signature: our_bitcoin_sig,
})
2017-12-25 01:05:27 -05:00
}
#[allow(dead_code)]
// Messages of up to 64KB should never end up more than half full with addresses, as that would
// be absurd. We ensure this by checking that at least 500 (our stated public contract on when
// broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
// message...
const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
#[deny(const_err)]
#[allow(dead_code)]
// ...by failing to compile if the number of addresses that would be half of a message is
// smaller than 500:
const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
/// Generates a signed node_announcement from the given arguments and creates a
/// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
/// seen a channel_announcement from us (ie unless we have public channels open).
///
/// RGB is a node "color" and alias is a printable human-readable string to describe this node
/// to humans. They carry no in-protocol meaning.
///
/// addresses represent the set (possibly empty) of socket addresses on which this node accepts
/// incoming connections. These will be broadcast to the network, publicly tying these
/// addresses together. If you wish to preserve user privacy, addresses should likely contain
/// only Tor Onion addresses.
///
/// Panics if addresses is absurdly large (more than 500).
pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], addresses: Vec<NetAddress>) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
if addresses.len() > 500 {
panic!("More than half the message size was taken up by public addresses!");
}
let announcement = msgs::UnsignedNodeAnnouncement {
features: NodeFeatures::known(),
timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
node_id: self.get_our_node_id(),
rgb, alias, addresses,
excess_address_data: Vec::new(),
excess_data: Vec::new(),
};
let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
msg: msgs::NodeAnnouncement {
signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
contents: announcement
},
});
}
/// Processes HTLCs which are pending waiting on random forward delay.
///
2019-01-24 16:41:51 +02:00
/// Should only really ever be called in response to a PendingHTLCsForwardable event.
/// Will likely generate further events.
pub fn process_pending_htlc_forwards(&self) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2017-12-25 01:05:27 -05:00
let mut new_events = Vec::new();
let mut failed_forwards = Vec::new();
let mut handle_errors = Vec::new();
2017-12-25 01:05:27 -05:00
{
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
2017-12-25 01:05:27 -05:00
if short_chan_id != 0 {
let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
2017-12-25 01:05:27 -05:00
Some(chan_id) => chan_id.clone(),
None => {
failed_forwards.reserve(pending_forwards.len());
for forward_info in pending_forwards.drain(..) {
match forward_info {
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
prev_funding_outpoint } => {
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
short_channel_id: prev_short_channel_id,
outpoint: prev_funding_outpoint,
htlc_id: prev_htlc_id,
incoming_packet_shared_secret: forward_info.incoming_shared_secret,
});
failed_forwards.push((htlc_source, forward_info.payment_hash,
HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
));
},
HTLCForwardInfo::FailHTLC { .. } => {
// Channel went away before we could fail it. This implies
// the channel is now on chain and our counterparty is
// trying to broadcast the HTLC-Timeout, but that's their
// problem, not ours.
}
}
}
2017-12-25 01:05:27 -05:00
continue;
}
};
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
let mut add_htlc_msgs = Vec::new();
let mut fail_htlc_msgs = Vec::new();
for forward_info in pending_forwards.drain(..) {
match forward_info {
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
routing: PendingHTLCRouting::Forward {
onion_packet, ..
}, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
prev_funding_outpoint } => {
log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
short_channel_id: prev_short_channel_id,
outpoint: prev_funding_outpoint,
htlc_id: prev_htlc_id,
incoming_packet_shared_secret: incoming_shared_secret,
});
match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
Err(e) => {
if let ChannelError::Ignore(msg) = e {
log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
} else {
panic!("Stated return value requirements in send_htlc() were not met");
}
let chan_update = self.get_channel_update(chan.get()).unwrap();
failed_forwards.push((htlc_source, payment_hash,
HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
));
continue;
},
Ok(update_add) => {
match update_add {
Some(msg) => { add_htlc_msgs.push(msg); },
None => {
// Nothing to do here...we're waiting on a remote
// revoke_and_ack before we can add anymore HTLCs. The Channel
// will automatically handle building the update_add_htlc and
// commitment_signed messages when we can.
// TODO: Do some kind of timer to set the channel as !is_live()
// as we don't really want others relying on us relaying through
// this channel currently :/.
}
}
}
2017-12-25 01:05:27 -05:00
}
},
HTLCForwardInfo::AddHTLC { .. } => {
panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
},
HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
Err(e) => {
if let ChannelError::Ignore(msg) = e {
log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
} else {
panic!("Stated return value requirements in get_update_fail_htlc() were not met");
}
// fail-backs are best-effort, we probably already have one
// pending, and if not that's OK, if not, the channel is on
// the chain and sending the HTLC-Timeout is their problem.
continue;
},
Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
Ok(None) => {
// Nothing to do here...we're waiting on a remote
// revoke_and_ack before we can update the commitment
// transaction. The Channel will automatically handle
// building the update_fail_htlc and commitment_signed
// messages when we can.
// We don't need any kind of timer here as they should fail
// the channel onto the chain if they can't get our
// update_fail_htlc in time, it's not our problem.
}
}
},
}
2017-12-25 01:05:27 -05:00
}
if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
Ok(res) => res,
Err(e) => {
// We surely failed send_commitment due to bad keys, in that case
// close channel and then send error message to peer.
let counterparty_node_id = chan.get().get_counterparty_node_id();
let err: Result<(), _> = match e {
ChannelError::Ignore(_) => {
panic!("Stated return value requirements in send_commitment() were not met");
},
ChannelError::Close(msg) => {
log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
let (channel_id, mut channel) = chan.remove_entry();
if let Some(short_id) = channel.get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
},
ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
};
handle_errors.push((counterparty_node_id, err));
continue;
}
};
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
2017-12-25 01:05:27 -05:00
continue;
}
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: chan.get().get_counterparty_node_id(),
updates: msgs::CommitmentUpdate {
update_add_htlcs: add_htlc_msgs,
update_fulfill_htlcs: Vec::new(),
update_fail_htlcs: fail_htlc_msgs,
update_fail_malformed_htlcs: Vec::new(),
update_fee: None,
commitment_signed: commitment_msg,
},
});
}
} else {
unreachable!();
2017-12-25 01:05:27 -05:00
}
} else {
for forward_info in pending_forwards.drain(..) {
match forward_info {
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
incoming_shared_secret, payment_hash, amt_to_forward, .. },
prev_funding_outpoint } => {
let prev_hop = HTLCPreviousHopData {
short_channel_id: prev_short_channel_id,
outpoint: prev_funding_outpoint,
htlc_id: prev_htlc_id,
incoming_packet_shared_secret: incoming_shared_secret,
};
let mut total_value = 0;
let payment_secret_opt =
if let &Some(ref data) = &payment_data { Some(data.payment_secret.clone()) } else { None };
let htlcs = channel_state.claimable_htlcs.entry((payment_hash, payment_secret_opt))
.or_insert(Vec::new());
htlcs.push(ClaimableHTLC {
prev_hop,
value: amt_to_forward,
payment_data: payment_data.clone(),
cltv_expiry: incoming_cltv_expiry,
});
if let &Some(ref data) = &payment_data {
for htlc in htlcs.iter() {
total_value += htlc.value;
if htlc.payment_data.as_ref().unwrap().total_msat != data.total_msat {
total_value = msgs::MAX_VALUE_MSAT;
}
if total_value >= msgs::MAX_VALUE_MSAT { break; }
}
if total_value >= msgs::MAX_VALUE_MSAT || total_value > data.total_msat {
for htlc in htlcs.iter() {
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
htlc_msat_height_data.extend_from_slice(
&byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
);
failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
short_channel_id: htlc.prev_hop.short_channel_id,
outpoint: prev_funding_outpoint,
htlc_id: htlc.prev_hop.htlc_id,
incoming_packet_shared_secret: htlc.prev_hop.incoming_packet_shared_secret,
}), payment_hash,
HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
));
}
} else if total_value == data.total_msat {
new_events.push(events::Event::PaymentReceived {
payment_hash,
payment_secret: Some(data.payment_secret),
amt: total_value,
});
}
} else {
new_events.push(events::Event::PaymentReceived {
payment_hash,
payment_secret: None,
amt: amt_to_forward,
});
}
},
HTLCForwardInfo::AddHTLC { .. } => {
panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
},
HTLCForwardInfo::FailHTLC { .. } => {
panic!("Got pending fail of our own HTLC");
}
}
}
2017-12-25 01:05:27 -05:00
}
}
}
for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
}
for (counterparty_node_id, err) in handle_errors.drain(..) {
let _ = handle_error!(self, err, counterparty_node_id);
}
2017-12-25 01:05:27 -05:00
if new_events.is_empty() { return }
let mut events = self.pending_events.lock().unwrap();
events.append(&mut new_events);
2017-12-25 01:05:27 -05:00
}
/// Free the background events, generally called from timer_tick_occurred.
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
///
/// Exposed for testing to allow us to process events quickly without generating accidental
/// BroadcastChannelUpdate events in timer_tick_occurred.
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
///
/// Expects the caller to have a total_consistency_lock read lock.
fn process_background_events(&self) {
let mut background_events = Vec::new();
mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
for event in background_events.drain(..) {
match event {
BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
// The channel has already been closed, so no use bothering to care about the
// monitor updating completing.
let _ = self.chain_monitor.update_channel(funding_txo, update);
},
}
}
}
#[cfg(any(test, feature = "_test_utils"))]
pub(crate) fn test_process_background_events(&self) {
self.process_background_events();
}
/// If a peer is disconnected we mark any channels with that peer as 'disabled'.
/// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
/// to inform the network about the uselessness of these channels.
///
/// This method handles all the details, and must be called roughly once per minute.
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
///
/// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
pub fn timer_tick_occurred(&self) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
self.process_background_events();
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
for (_, chan) in channel_state.by_id.iter_mut() {
if chan.is_disabled_staged() && !chan.is_live() {
if let Ok(update) = self.get_channel_update(&chan) {
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
chan.to_fresh();
} else if chan.is_disabled_staged() && chan.is_live() {
chan.to_fresh();
} else if chan.is_disabled_marked() {
chan.to_disabled_staged();
}
}
}
/// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
/// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
/// along the path (including in our own channel on which we received it).
/// Returns false if no payment was found to fail backwards, true if the process of failing the
/// HTLC backwards has been started.
pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>) -> bool {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let mut channel_state = Some(self.channel_state.lock().unwrap());
let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&(*payment_hash, *payment_secret));
if let Some(mut sources) = removed_source {
for htlc in sources.drain(..) {
if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
self.best_block.read().unwrap().height()));
self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
}
true
} else { false }
}
// Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
// failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
// be surfaced to the user.
fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
match htlc_src {
HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
let (failure_code, onion_failure_data) =
match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
hash_map::Entry::Occupied(chan_entry) => {
if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
(0x1000|7, upd.encode_with_len())
} else {
(0x4000|10, Vec::new())
}
},
hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
};
let channel_state = self.channel_state.lock().unwrap();
self.fail_htlc_backwards_internal(channel_state,
htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
},
HTLCSource::OutboundRoute { .. } => {
self.pending_events.lock().unwrap().push(
events::Event::PaymentFailed {
payment_hash,
rejected_by_dest: false,
#[cfg(test)]
error_code: None,
#[cfg(test)]
error_data: None,
}
)
},
};
}
}
/// Fails an HTLC backwards to the sender of it to us.
/// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
/// There are several callsites that do stupid things like loop over a list of payment_hashes
/// to fail and take the channel_state lock for each iteration (as we take ownership and may
/// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
/// still-available channels.
fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2018-12-20 22:50:25 -05:00
//TODO: There is a timing attack here where if a node fails an HTLC back to us they can
//identify whether we sent it or not based on the (I presume) very different runtime
//between the branches here. We should make this async and move it into the forward HTLCs
//timer handling.
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
// from block_connected which may run during initialization prior to the chain_monitor
// being fully configured. See the docs for `ChannelManagerReadArgs` for more.
match source {
HTLCSource::OutboundRoute { ref path, .. } => {
log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
mem::drop(channel_state_lock);
match &onion_error {
&HTLCFailReason::LightningError { ref err } => {
2018-12-17 18:54:48 -05:00
#[cfg(test)]
let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2018-12-17 18:54:48 -05:00
#[cfg(not(test))]
let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2018-12-17 18:54:48 -05:00
// TODO: If we decided to blame ourselves (or one of our channels) in
// process_onion_failure we should close that channel as it implies our
// next-hop is needlessly blaming us!
if let Some(update) = channel_update {
self.channel_state.lock().unwrap().pending_msg_events.push(
events::MessageSendEvent::PaymentFailureNetworkUpdate {
update,
}
);
}
self.pending_events.lock().unwrap().push(
events::Event::PaymentFailed {
payment_hash: payment_hash.clone(),
rejected_by_dest: !payment_retryable,
2018-12-17 18:54:48 -05:00
#[cfg(test)]
error_code: onion_error_code,
#[cfg(test)]
error_data: onion_error_data
}
);
},
2018-12-17 18:54:48 -05:00
&HTLCFailReason::Reason {
#[cfg(test)]
ref failure_code,
#[cfg(test)]
ref data,
2018-12-17 18:54:48 -05:00
.. } => {
// we get a fail_malformed_htlc from the first hop
// TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
// failures here, but that would be insufficient as get_route
// generally ignores its view of our own channels as we provide them via
// ChannelDetails.
// TODO: For non-temporary failures, we really should be closing the
// channel here as we apparently can't relay through them anyway.
self.pending_events.lock().unwrap().push(
events::Event::PaymentFailed {
payment_hash: payment_hash.clone(),
rejected_by_dest: path.len() == 1,
2018-12-17 18:54:48 -05:00
#[cfg(test)]
error_code: Some(*failure_code),
#[cfg(test)]
error_data: Some(data.clone()),
}
);
}
}
},
HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
let err_packet = match onion_error {
HTLCFailReason::Reason { failure_code, data } => {
log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
},
HTLCFailReason::LightningError { err } => {
log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
}
};
2018-12-20 22:50:25 -05:00
let mut forward_event = None;
if channel_state_lock.forward_htlcs.is_empty() {
forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2018-12-20 22:50:25 -05:00
}
match channel_state_lock.forward_htlcs.entry(short_channel_id) {
hash_map::Entry::Occupied(mut entry) => {
entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
},
2018-12-20 22:50:25 -05:00
hash_map::Entry::Vacant(entry) => {
entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
}
}
mem::drop(channel_state_lock);
if let Some(time) = forward_event {
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::PendingHTLCsForwardable {
time_forwardable: time
});
}
},
}
}
2017-12-25 01:05:27 -05:00
/// Provides a payment preimage in response to a PaymentReceived event, returning true and
/// generating message events for the net layer to claim the payment, if possible. Thus, you
/// should probably kick the net layer to go send messages if this returns true!
///
/// You must specify the expected amounts for this HTLC, and we will only claim HTLCs
/// available within a few percent of the expected amount. This is critical for several
/// reasons : a) it avoids providing senders with `proof-of-payment` (in the form of the
/// payment_preimage without having provided the full value and b) it avoids certain
/// privacy-breaking recipient-probing attacks which may reveal payment activity to
/// motivated attackers.
///
/// Note that the privacy concerns in (b) are not relevant in payments with a payment_secret
/// set. Thus, for such payments we will claim any payments which do not under-pay.
///
/// May panic if called except in response to a PaymentReceived event.
pub fn claim_funds(&self, payment_preimage: PaymentPreimage, payment_secret: &Option<PaymentSecret>, expected_amount: u64) -> bool {
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2017-12-25 01:05:27 -05:00
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let mut channel_state = Some(self.channel_state.lock().unwrap());
let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&(payment_hash, *payment_secret));
if let Some(mut sources) = removed_source {
assert!(!sources.is_empty());
// If we are claiming an MPP payment, we have to take special care to ensure that each
// channel exists before claiming all of the payments (inside one lock).
// Note that channel existance is sufficient as we should always get a monitor update
// which will take care of the real HTLC claim enforcement.
//
// If we find an HTLC which we would need to claim but for which we do not have a
// channel, we will fail all parts of the MPP payment. While we could wait and see if
// the sender retries the already-failed path(s), it should be a pretty rare case where
// we got all the HTLCs and then a channel closed while we were waiting for the user to
// provide the preimage, so worrying too much about the optimal handling isn't worth
// it.
let (is_mpp, mut valid_mpp) = if let &Some(ref data) = &sources[0].payment_data {
assert!(payment_secret.is_some());
(true, data.total_msat >= expected_amount)
} else {
assert!(payment_secret.is_none());
(false, false)
};
for htlc in sources.iter() {
if !is_mpp || !valid_mpp { break; }
if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
valid_mpp = false;
}
}
let mut errs = Vec::new();
let mut claimed_any_htlcs = false;
for htlc in sources.drain(..) {
if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
if (is_mpp && !valid_mpp) || (!is_mpp && (htlc.value < expected_amount || htlc.value > expected_amount * 2)) {
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
self.best_block.read().unwrap().height()));
self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
} else {
match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
Err(Some(e)) => {
if let msgs::ErrorAction::IgnoreError = e.1.err.action {
// We got a temporary failure updating monitor, but will claim the
// HTLC when the monitor updating is restored (or on chain).
log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
claimed_any_htlcs = true;
} else { errs.push(e); }
},
Err(None) if is_mpp => unreachable!("We already checked for channel existence, we can't fail here!"),
Err(None) => {
log_warn!(self.logger, "Channel we expected to claim an HTLC from was closed.");
},
Ok(()) => claimed_any_htlcs = true,
}
}
2017-12-25 01:05:27 -05:00
}
// Now that we've done the entire above loop in one lock, we can handle any errors
// which were generated.
channel_state.take();
for (counterparty_node_id, err) in errs.drain(..) {
let res: Result<(), _> = Err(err);
let _ = handle_error!(self, res, counterparty_node_id);
}
claimed_any_htlcs
} else { false }
}
2017-12-25 01:05:27 -05:00
fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
//TODO: Delay the claimed_funds relaying just like we do outbound relay!
let channel_state = &mut **channel_state_lock;
let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
Some(chan_id) => chan_id.clone(),
None => {
return Err(None)
}
};
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
Ok((msgs, monitor_option)) => {
if let Some(monitor_update) = monitor_option {
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
if was_frozen_for_monitor {
assert!(msgs.is_none());
} else {
return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
}
}
}
if let Some((msg, commitment_signed)) = msgs {
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: chan.get().get_counterparty_node_id(),
updates: msgs::CommitmentUpdate {
update_add_htlcs: Vec::new(),
update_fulfill_htlcs: vec![msg],
update_fail_htlcs: Vec::new(),
update_fail_malformed_htlcs: Vec::new(),
update_fee: None,
commitment_signed,
}
});
}
return Ok(())
},
Err(e) => {
// TODO: Do something with e?
// This should only occur if we are claiming an HTLC at the same time as the
// HTLC is being failed (eg because a block is being connected and this caused
// an HTLC to time out). This should, of course, only occur if the user is the
// one doing the claiming (as it being a part of a peer claim would imply we're
// about to lose funds) and only if the lock in claim_funds was dropped as a
// previous HTLC was failed (thus not for an MPP payment).
debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
return Err(None)
},
}
} else { unreachable!(); }
}
fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
match source {
HTLCSource::OutboundRoute { .. } => {
mem::drop(channel_state_lock);
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::PaymentSent {
payment_preimage
});
},
HTLCSource::PreviousHopData(hop_data) => {
let prev_outpoint = hop_data.outpoint;
if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
Ok(()) => Ok(()),
Err(None) => {
let preimage_update = ChannelMonitorUpdate {
update_id: CLOSED_CHANNEL_UPDATE_ID,
updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
payment_preimage: payment_preimage.clone(),
}],
};
// We update the ChannelMonitor on the backward link, after
// receiving an offchain preimage event from the forward link (the
// event being update_fulfill_htlc).
if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
payment_preimage, e);
}
Ok(())
},
Err(Some(res)) => Err(res),
} {
mem::drop(channel_state_lock);
let res: Result<(), _> = Err(err);
let _ = handle_error!(self, res, counterparty_node_id);
}
},
}
2017-12-25 01:05:27 -05:00
}
/// Gets the node_id held by this ChannelManager
pub fn get_our_node_id(&self) -> PublicKey {
self.our_network_pubkey.clone()
2017-12-25 01:05:27 -05:00
}
/// Restores a single, given channel to normal operation after a
/// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
/// operation.
///
/// All ChannelMonitor updates up to and including highest_applied_update_id must have been
/// fully committed in every copy of the given channels' ChannelMonitors.
///
/// Note that there is no effect to calling with a highest_applied_update_id other than the
/// current latest ChannelMonitorUpdate and one call to this function after multiple
/// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
/// exists largely only to prevent races between this and concurrent update_monitor calls.
///
/// Thus, the anticipated use is, at a high level:
/// 1) You register a chain::Watch with this ChannelManager,
/// 2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
/// said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
/// any time it cannot do so instantly,
/// 3) update(s) are applied to each remote copy of a ChannelMonitor,
/// 4) once all remote copies are updated, you call this function with the update_id that
/// completed, and once it is the latest the Channel will be re-enabled.
pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let mut close_results = Vec::new();
let mut htlc_forwards = Vec::new();
let mut htlc_failures = Vec::new();
let mut pending_events = Vec::new();
{
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
let channel = match channel_state.by_id.get_mut(&funding_txo.to_channel_id()) {
Some(chan) => chan,
None => return,
};
if !channel.is_awaiting_monitor_update() || channel.get_latest_monitor_update_id() != highest_applied_update_id {
return;
}
let (raa, commitment_update, order, pending_forwards, mut pending_failures, funding_broadcastable, funding_locked) = channel.monitor_updating_restored(&self.logger);
if !pending_forwards.is_empty() {
htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), funding_txo.clone(), pending_forwards));
}
htlc_failures.append(&mut pending_failures);
macro_rules! handle_cs { () => {
if let Some(update) = commitment_update {
pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: channel.get_counterparty_node_id(),
updates: update,
});
}
} }
macro_rules! handle_raa { () => {
if let Some(revoke_and_ack) = raa {
pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
node_id: channel.get_counterparty_node_id(),
msg: revoke_and_ack,
});
}
} }
match order {
RAACommitmentOrder::CommitmentFirst => {
handle_cs!();
handle_raa!();
},
RAACommitmentOrder::RevokeAndACKFirst => {
handle_raa!();
handle_cs!();
},
}
if let Some(tx) = funding_broadcastable {
self.tx_broadcaster.broadcast_transaction(&tx);
}
if let Some(msg) = funding_locked {
pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
node_id: channel.get_counterparty_node_id(),
msg,
});
if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
node_id: channel.get_counterparty_node_id(),
msg: announcement_sigs,
});
}
short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
}
}
self.pending_events.lock().unwrap().append(&mut pending_events);
for failure in htlc_failures.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
}
self.forward_htlcs(&mut htlc_forwards[..]);
for res in close_results.drain(..) {
self.finish_force_close_channel(res);
}
}
fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
if msg.chain_hash != self.genesis_hash {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
}
let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
.map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(channel.channel_id()) {
hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
hash_map::Entry::Vacant(entry) => {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
node_id: counterparty_node_id.clone(),
msg: channel.get_accept_channel(),
});
entry.insert(channel);
}
}
Ok(())
}
fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
let (value, output_script, user_id) = {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.temporary_channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
}
try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
(chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
}
};
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::FundingGenerationReady {
temporary_channel_id: msg.temporary_channel_id,
channel_value_satoshis: value,
output_script,
user_channel_id: user_id,
});
Ok(())
}
fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
let ((funding_msg, monitor), mut chan) = {
2021-04-06 11:34:17 -07:00
let best_block = *self.best_block.read().unwrap();
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
}
2021-04-06 11:34:17 -07:00
(try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
}
};
// Because we have exclusive ownership of the channel here we can release the channel_state
// lock before watch_channel
if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
match e {
ChannelMonitorUpdateErr::PermanentFailure => {
// Note that we reply with the new channel_id in error messages if we gave up on the
// channel, not the temporary_channel_id. This is compatible with ourselves, but the
// spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
// any messages referencing a previously-closed channel anyway.
// We do not do a force-close here as that would generate a monitor update for
// a monitor that we didn't manage to store (and that we don't care about - we
// don't respond with the funding_signed so the channel can never go on chain).
let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
assert!(failed_htlcs.is_empty());
return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
},
ChannelMonitorUpdateErr::TemporaryFailure => {
// There's no problem signing a counterparty's funding transaction if our monitor
// hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
// accepted payment from yet. We do, however, need to wait to send our funding_locked
// until we have persisted our monitor.
chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
},
}
}
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(funding_msg.channel_id) {
hash_map::Entry::Occupied(_) => {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
},
hash_map::Entry::Vacant(e) => {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
node_id: counterparty_node_id.clone(),
msg: funding_msg,
});
e.insert(chan);
}
}
Ok(())
}
fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
let funding_tx = {
2021-04-06 11:34:17 -07:00
let best_block = *self.best_block.read().unwrap();
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
2021-04-06 11:34:17 -07:00
let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
Ok(update) => update,
Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
};
if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
}
funding_tx
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
};
self.tx_broadcaster.broadcast_transaction(&funding_tx);
Ok(())
}
fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
// If we see locking block before receiving remote funding_locked, we broadcast our
// announcement_sigs at remote funding_locked reception. If we receive remote
// funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
// block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
// the order of the events but our peer may not receive it due to disconnection. The specs
// lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
// connection in the future if simultaneous misses by both peers due to network/hardware
// failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
// to be received, from then sigs are going to be flood to the whole network.
channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
node_id: counterparty_node_id.clone(),
msg: announcement_sigs,
});
}
Ok(())
},
hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
}
fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
let (mut dropped_htlcs, chan_option) = {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id.clone()) {
hash_map::Entry::Occupied(mut chan_entry) => {
if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
if let Some(msg) = shutdown {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
node_id: counterparty_node_id.clone(),
msg,
});
}
if let Some(msg) = closing_signed {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
node_id: counterparty_node_id.clone(),
msg,
});
}
if chan_entry.get().is_shutdown() {
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
(dropped_htlcs, Some(chan_entry.remove_entry().1))
} else { (dropped_htlcs, None) }
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
};
for htlc_source in dropped_htlcs.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
if let Some(chan) = chan_option {
if let Ok(update) = self.get_channel_update(&chan) {
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
}
Ok(())
}
fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
let (tx, chan_option) = {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id.clone()) {
hash_map::Entry::Occupied(mut chan_entry) => {
if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
if let Some(msg) = closing_signed {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
node_id: counterparty_node_id.clone(),
msg,
});
}
if tx.is_some() {
// We're done with this channel, we've got a signed closing transaction and
// will send the closing_signed back to the remote peer upon return. This
// also implies there are no pending HTLCs left on the channel, so we can
// fully delete it from tracking (the channel monitor is still around to
// watch for old state broadcasts)!
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
(tx, Some(chan_entry.remove_entry().1))
} else { (tx, None) }
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
};
if let Some(broadcast_tx) = tx {
log_trace!(self.logger, "Broadcast onchain {}", log_tx!(broadcast_tx));
self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
}
if let Some(chan) = chan_option {
if let Ok(update) = self.get_channel_update(&chan) {
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
}
Ok(())
}
fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
//TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
//determine the state of the payment based on our response/if we forward anything/the time
//we take to respond. We should take care to avoid allowing such an attack.
//
//TODO: There exists a further attack where a node may garble the onion data, forward it to
//us repeatedly garbled in different ways, and compare our error messages, which are
2019-01-24 16:41:51 +02:00
//encrypted with the same key. It's not immediately obvious how to usefully exploit that,
//but we should prevent it anyway.
let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
// Ensure error_code has the UPDATE flag set, since by default we send a
// channel update along as part of failing the HTLC.
assert!((error_code & 0x1000) != 0);
// If the update_add is completely bogus, the call will Err and we will close,
// but if we've sent a shutdown and they haven't acknowledged it yet, we just
// want to reject the new HTLC and fail it backwards instead of forwarding.
match pending_forward_info {
PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
let reason = if let Ok(upd) = self.get_channel_update(chan) {
onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
let mut res = Vec::with_capacity(8 + 128);
2020-06-28 14:43:10 +03:00
// TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
res.extend_from_slice(&byte_utils::be16_to_array(0));
res.extend_from_slice(&upd.encode_with_len()[..]);
res
}[..])
} else {
// The only case where we'd be unable to
// successfully get a channel update is if the
// channel isn't in the fully-funded state yet,
// implying our counterparty is trying to route
// payments over the channel back to themselves
// (cause no one else should know the short_id
// is a lightning channel yet). We should have
// no problem just calling this
// unknown_next_peer (0x4000|10).
onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
};
let msg = msgs::UpdateFailHTLC {
channel_id: msg.channel_id,
htlc_id: msg.htlc_id,
reason
};
PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
},
_ => pending_forward_info
}
};
2020-06-22 15:29:29 -04:00
try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
Ok(())
}
fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
let mut channel_lock = self.channel_state.lock().unwrap();
let htlc_source = {
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
};
self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
Ok(())
}
fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
Ok(())
}
fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
2018-11-05 21:10:17 +09:00
if (msg.failure_code & 0x8000) == 0 {
let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
2020-02-04 09:15:59 -08:00
try_chan_entry!(self, Err(chan_err), channel_state, chan);
}
try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
Ok(())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
}
fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
Err((Some(update), e)) => {
assert!(chan.get().is_awaiting_monitor_update());
let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
try_chan_entry!(self, Err(e), channel_state, chan);
unreachable!();
},
Ok(res) => res
};
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
//TODO: Rebroadcast closing_signed if present on monitor update restoration
}
channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
node_id: counterparty_node_id.clone(),
msg: revoke_and_ack,
});
if let Some(msg) = commitment_signed {
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: counterparty_node_id.clone(),
updates: msgs::CommitmentUpdate {
update_add_htlcs: Vec::new(),
update_fulfill_htlcs: Vec::new(),
update_fail_htlcs: Vec::new(),
update_fail_malformed_htlcs: Vec::new(),
update_fee: None,
commitment_signed: msg,
},
});
}
if let Some(msg) = closing_signed {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
node_id: counterparty_node_id.clone(),
msg,
});
}
Ok(())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
}
#[inline]
fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
let mut forward_event = None;
if !pending_forwards.is_empty() {
let mut channel_state = self.channel_state.lock().unwrap();
if channel_state.forward_htlcs.is_empty() {
forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
}
for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
match channel_state.forward_htlcs.entry(match forward_info.routing {
PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
PendingHTLCRouting::Receive { .. } => 0,
}) {
hash_map::Entry::Occupied(mut entry) => {
entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
prev_htlc_id, forward_info });
},
hash_map::Entry::Vacant(entry) => {
entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
prev_htlc_id, forward_info }));
}
}
}
}
match forward_event {
Some(time) => {
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::PendingHTLCsForwardable {
time_forwardable: time
});
}
None => {},
}
}
}
fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
let mut htlcs_to_fail = Vec::new();
let res = loop {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
htlcs_to_fail = htlcs_to_fail_in;
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
if was_frozen_for_monitor {
assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
} else {
if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
break Err(e);
} else { unreachable!(); }
}
}
if let Some(updates) = commitment_update {
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: counterparty_node_id.clone(),
updates,
});
}
if let Some(msg) = closing_signed {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
node_id: counterparty_node_id.clone(),
msg,
});
}
break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
},
hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
};
self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
match res {
Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
for failure in pending_failures.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
}
self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
Ok(())
},
Err(e) => Err(e)
}
}
fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
Ok(())
}
fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
if !chan.get().is_usable() {
return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
}
let our_node_id = self.get_our_node_id();
let (announcement, our_bitcoin_sig) =
try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
let were_node_one = announcement.node_id_1 == our_node_id;
let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
{
let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
(Err(e), _) => {
let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
try_chan_entry!(self, Err(chan_err), channel_state, chan);
},
(_, Err(e)) => {
let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
try_chan_entry!(self, Err(chan_err), channel_state, chan);
},
_ => {}
}
}
let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
msg: msgs::ChannelAnnouncement {
node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
contents: announcement,
},
update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
});
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
Ok(())
}
fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
Some(chan_id) => chan_id.clone(),
None => {
// It's not a local channel
return Ok(())
}
};
match channel_state.by_id.entry(chan_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
// TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id));
}
try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
},
hash_map::Entry::Vacant(_) => unreachable!()
}
Ok(())
}
fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
// Currently, we expect all holding cell update_adds to be dropped on peer
// disconnect, so Channel's reestablish will never hand us any holding cell
// freed HTLCs to fail backwards. If in the future we no longer drop pending
// add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) =
try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
if let Some(monitor_update) = monitor_update_opt {
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
// channel_reestablish doesn't guarantee the order it returns is sensical
// for the messages it returns, but if we're setting what messages to
// re-transmit on monitor update success, we need to make sure it is sane.
if revoke_and_ack.is_none() {
order = RAACommitmentOrder::CommitmentFirst;
}
if commitment_update.is_none() {
order = RAACommitmentOrder::RevokeAndACKFirst;
}
return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
//TODO: Resend the funding_locked if needed once we get the monitor running again
}
}
if let Some(msg) = funding_locked {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
node_id: counterparty_node_id.clone(),
msg
});
}
macro_rules! send_raa { () => {
if let Some(msg) = revoke_and_ack {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
node_id: counterparty_node_id.clone(),
msg
});
}
} }
macro_rules! send_cu { () => {
if let Some(updates) = commitment_update {
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: counterparty_node_id.clone(),
updates
});
}
} }
match order {
RAACommitmentOrder::RevokeAndACKFirst => {
send_raa!();
send_cu!();
},
RAACommitmentOrder::CommitmentFirst => {
send_cu!();
send_raa!();
},
}
if let Some(msg) = shutdown {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
node_id: counterparty_node_id.clone(),
msg,
});
}
Ok(())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
}
/// Begin Update fee process. Allowed only on an outbound channel.
/// If successful, will generate a UpdateHTLCs event, so you should probably poll
/// PeerManager::process_events afterwards.
/// Note: This API is likely to change!
/// (C-not exported) Cause its doc(hidden) anyway
#[doc(hidden)]
pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let counterparty_node_id;
let err: Result<(), _> = loop {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(channel_id) {
hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
hash_map::Entry::Occupied(mut chan) => {
if !chan.get().is_outbound() {
return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
}
if chan.get().is_awaiting_monitor_update() {
return Err(APIError::MonitorUpdateFailed);
}
if !chan.get().is_live() {
return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
}
counterparty_node_id = chan.get().get_counterparty_node_id();
if let Some((update_fee, commitment_signed, monitor_update)) =
break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
{
if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
unimplemented!();
}
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: chan.get().get_counterparty_node_id(),
updates: msgs::CommitmentUpdate {
update_add_htlcs: Vec::new(),
update_fulfill_htlcs: Vec::new(),
update_fail_htlcs: Vec::new(),
update_fail_malformed_htlcs: Vec::new(),
update_fee: Some(update_fee),
commitment_signed,
},
});
}
},
}
return Ok(())
};
match handle_error!(self, err, counterparty_node_id) {
Ok(_) => unreachable!(),
Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
}
}
/// Process pending events from the `chain::Watch`.
fn process_pending_monitor_events(&self) {
let mut failed_channels = Vec::new();
{
for monitor_event in self.chain_monitor.release_pending_monitor_events() {
match monitor_event {
MonitorEvent::HTLCEvent(htlc_update) => {
if let Some(preimage) = htlc_update.payment_preimage {
log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
} else {
log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
},
MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
let by_id = &mut channel_state.by_id;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
if let Some(short_id) = chan.get_short_channel_id() {
short_to_id.remove(&short_id);
}
failed_channels.push(chan.force_shutdown(false));
if let Ok(update) = self.get_channel_update(&chan) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
pending_msg_events.push(events::MessageSendEvent::HandleError {
node_id: chan.get_counterparty_node_id(),
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
},
});
}
},
}
}
}
for failure in failed_channels.drain(..) {
self.finish_force_close_channel(failure);
}
}
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
/// Handle a list of channel failures during a block_connected or block_disconnected call,
/// pushing the channel monitor update (if any) to the background events queue and removing the
/// Channel object.
fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
for mut failure in failed_channels.drain(..) {
// Either a commitment transactions has been confirmed on-chain or
// Channel::block_disconnected detected that the funding transaction has been
// reorganized out of the main chain.
// We cannot broadcast our latest local state via monitor update (as
// Channel::force_shutdown tries to make us do) as we may still be in initialization,
// so we track the update internally and handle it when the user next calls
// timer_tick_occurred, guaranteeing we're running normally.
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
if let Some((funding_txo, update)) = failure.0.take() {
assert_eq!(update.updates.len(), 1);
if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
assert!(should_broadcast);
} else { unreachable!(); }
self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
}
self.finish_force_close_channel(failure);
}
}
fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
match payment_secrets.entry(payment_hash) {
hash_map::Entry::Vacant(e) => {
e.insert(PendingInboundPayment {
payment_secret, min_value_msat, payment_preimage,
// We assume that highest_seen_timestamp is pretty close to the current time -
// its updated when we receive a new block with the maximum time we've seen in
// a header. It should never be more than two hours in the future.
// Thus, we add two hours here as a buffer to ensure we absolutely
// never fail a payment too early.
// Note that we assume that received blocks have reasonably up-to-date
// timestamps.
expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
});
},
hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
}
Ok(payment_secret)
}
/// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
/// to pay us.
///
/// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
/// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
///
/// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
///
/// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> (PaymentHash, PaymentSecret) {
let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
(payment_hash,
self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)
.expect("RNG Generated Duplicate PaymentHash"))
}
/// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
/// stored external to LDK.
///
/// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
/// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
/// the `min_value_msat` provided here, if one is provided.
///
/// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
/// method may return an Err if another payment with the same payment_hash is still pending.
///
/// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
/// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
/// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
/// sender "proof-of-payment" unless they have paid the required amount.
///
/// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
/// in excess of the current time. This should roughly match the expiry time set in the invoice.
/// After this many seconds, we will remove the inbound payment, resulting in any attempts to
/// pay the invoice failing. The BOLT spec suggests 7,200 secs as a default validity time for
/// invoices when no timeout is set.
///
/// Note that we use block header time to time-out pending inbound payments (with some margin
/// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
/// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
/// If you need exact expiry semantics, you should enforce them upon receipt of
/// [`PaymentReceived`].
///
/// May panic if `invoice_expiry_delta_secs` is greater than one year.
///
/// [`create_inbound_payment`]: Self::create_inbound_payment
/// [`PaymentReceived`]: events::Event::PaymentReceived
pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
}
2017-12-25 01:05:27 -05:00
}
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
//TODO: This behavior should be documented. It's non-intuitive that we query
// ChannelMonitors when clearing other events.
self.process_pending_monitor_events();
let mut ret = Vec::new();
let mut channel_state = self.channel_state.lock().unwrap();
mem::swap(&mut ret, &mut channel_state.pending_msg_events);
ret
}
}
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn get_and_clear_pending_events(&self) -> Vec<Event> {
//TODO: This behavior should be documented. It's non-intuitive that we query
// ChannelMonitors when clearing other events.
self.process_pending_monitor_events();
2017-12-25 01:05:27 -05:00
let mut ret = Vec::new();
let mut pending_events = self.pending_events.lock().unwrap();
2017-12-25 01:05:27 -05:00
mem::swap(&mut ret, &mut *pending_events);
ret
}
}
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
where
M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn block_connected(&self, block: &Block, height: u32) {
{
let best_block = self.best_block.read().unwrap();
assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
"Blocks must be connected in chain-order - the connected header must build on the last connected header");
assert_eq!(best_block.height(), height - 1,
"Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
}
let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
self.transactions_confirmed(&block.header, &txdata, height);
self.best_block_updated(&block.header, height);
}
fn block_disconnected(&self, header: &BlockHeader, height: u32) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let new_height = height - 1;
{
let mut best_block = self.best_block.write().unwrap();
assert_eq!(best_block.block_hash(), header.block_hash(),
"Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
assert_eq!(best_block.height(), height,
"Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
*best_block = BestBlock::new(header.prev_blockhash, new_height)
}
self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time));
}
}
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
where
M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
// during initialization prior to the chain_monitor being fully configured in some cases.
// See the docs for `ChannelManagerReadArgs` for more.
let block_hash = header.block_hash();
log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
}
fn best_block_updated(&self, header: &BlockHeader, height: u32) {
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
// during initialization prior to the chain_monitor being fully configured in some cases.
// See the docs for `ChannelManagerReadArgs` for more.
let block_hash = header.block_hash();
log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
*self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time));
macro_rules! max_time {
($timestamp: expr) => {
loop {
// Update $timestamp to be the max of its current value and the block
// timestamp. This should keep us close to the current time without relying on
// having an explicit local time source.
// Just in case we end up in a race, we loop until we either successfully
// update $timestamp or decide we don't need to.
let old_serial = $timestamp.load(Ordering::Acquire);
if old_serial >= header.time as usize { break; }
if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
break;
}
}
}
}
max_time!(self.last_node_announcement_serial);
max_time!(self.highest_seen_timestamp);
}
fn get_relevant_txids(&self) -> Vec<Txid> {
let channel_state = self.channel_state.lock().unwrap();
let mut res = Vec::with_capacity(channel_state.short_to_id.len());
for chan in channel_state.by_id.values() {
if let Some(funding_txo) = chan.get_funding_txo() {
res.push(funding_txo.txid);
}
}
res
}
fn transaction_unconfirmed(&self, txid: &Txid) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
self.do_chain_event(None, |channel| {
if let Some(funding_txo) = channel.get_funding_txo() {
if funding_txo.txid == *txid {
channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new()))
} else { Ok((None, Vec::new())) }
} else { Ok((None, Vec::new())) }
});
}
}
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
where
M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
/// Calls a function which handles an on-chain event (blocks dis/connected, transactions
/// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
/// the function.
fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
(&self, height_opt: Option<u32>, f: FN) {
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
// during initialization prior to the chain_monitor being fully configured in some cases.
// See the docs for `ChannelManagerReadArgs` for more.
let mut failed_channels = Vec::new();
let mut timed_out_htlcs = Vec::new();
2017-12-25 01:05:27 -05:00
{
2018-07-28 19:15:20 -04:00
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
channel_state.by_id.retain(|_, channel| {
let res = f(channel);
if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
data: chan_update,
}));
}
if let Some(funding_locked) = chan_res {
pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
node_id: channel.get_counterparty_node_id(),
msg: funding_locked,
});
if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
node_id: channel.get_counterparty_node_id(),
msg: announcement_sigs,
});
} else {
log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
}
short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
}
} else if let Err(e) = res {
if let Some(short_id) = channel.get_short_channel_id() {
short_to_id.remove(&short_id);
}
// It looks like our counterparty went on-chain or funding transaction was
// reorged out of the main chain. Close the channel.
failed_channels.push(channel.force_shutdown(true));
if let Ok(update) = self.get_channel_update(&channel) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
pending_msg_events.push(events::MessageSendEvent::HandleError {
node_id: channel.get_counterparty_node_id(),
action: msgs::ErrorAction::SendErrorMessage { msg: e },
});
return false;
}
true
});
if let Some(height) = height_opt {
channel_state.claimable_htlcs.retain(|&(ref payment_hash, _), htlcs| {
htlcs.retain(|htlc| {
// If height is approaching the number of blocks we think it takes us to get
// our commitment transaction confirmed before the HTLC expires, plus the
// number of blocks we generally consider it to take to do a commitment update,
// just give up on it and fail the HTLC.
if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
failure_code: 0x4000 | 15,
data: htlc_msat_height_data
}));
false
} else { true }
});
!htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
});
}
2017-12-25 01:05:27 -05:00
}
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
self.handle_init_event_channel_failures(failed_channels);
for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
}
}
/// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
/// indicating whether persistence is necessary. Only one listener on
/// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
/// up.
/// Note that the feature `allow_wallclock_use` must be enabled to use this function.
#[cfg(any(test, feature = "allow_wallclock_use"))]
pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
self.persistence_notifier.wait_timeout(max_wait)
}
/// Blocks until ChannelManager needs to be persisted. Only one listener on
/// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
/// up.
pub fn await_persistable_update(&self) {
self.persistence_notifier.wait()
}
#[cfg(any(test, feature = "_test_utils"))]
pub fn get_persistence_condvar_value(&self) -> bool {
let mutcond = &self.persistence_notifier.persistence_lock;
let &(ref mtx, _) = mutcond;
let guard = mtx.lock().unwrap();
*guard
}
2017-12-25 01:05:27 -05:00
}
impl<Signer: Sign, M: Deref + Sync + Send, T: Deref + Sync + Send, K: Deref + Sync + Send, F: Deref + Sync + Send, L: Deref + Sync + Send>
ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
2017-12-25 01:05:27 -05:00
}
fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
}
fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
let mut failed_channels = Vec::new();
let mut failed_payments = Vec::new();
let mut no_channels_remain = true;
{
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
if no_connection_possible {
log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
channel_state.by_id.retain(|_, chan| {
if chan.get_counterparty_node_id() == *counterparty_node_id {
if let Some(short_id) = chan.get_short_channel_id() {
short_to_id.remove(&short_id);
}
failed_channels.push(chan.force_shutdown(true));
if let Ok(update) = self.get_channel_update(&chan) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
false
} else {
true
}
});
} else {
log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
channel_state.by_id.retain(|_, chan| {
if chan.get_counterparty_node_id() == *counterparty_node_id {
// Note that currently on channel reestablish we assert that there are no
// holding cell add-HTLCs, so if in the future we stop removing uncommitted HTLCs
// on peer disconnect here, there will need to be corresponding changes in
// reestablish logic.
let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
chan.to_disabled_marked();
if !failed_adds.is_empty() {
let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
failed_payments.push((chan_update, failed_adds));
}
if chan.is_shutdown() {
if let Some(short_id) = chan.get_short_channel_id() {
short_to_id.remove(&short_id);
}
return false;
} else {
no_channels_remain = false;
}
}
true
})
}
pending_msg_events.retain(|msg| {
match msg {
&events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
&events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
&events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
&events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
&events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
&events::MessageSendEvent::SendShortIdsQuery { .. } => false,
&events::MessageSendEvent::SendReplyChannelRange { .. } => false,
}
});
}
if no_channels_remain {
self.per_peer_state.write().unwrap().remove(counterparty_node_id);
}
for failure in failed_channels.drain(..) {
self.finish_force_close_channel(failure);
}
for (chan_update, mut htlc_sources) in failed_payments {
for (htlc_source, payment_hash) in htlc_sources.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
}
}
}
fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
{
let mut peer_state_lock = self.per_peer_state.write().unwrap();
match peer_state_lock.entry(counterparty_node_id.clone()) {
hash_map::Entry::Vacant(e) => {
e.insert(Mutex::new(PeerState {
latest_features: init_msg.features.clone(),
}));
},
hash_map::Entry::Occupied(e) => {
e.get().lock().unwrap().latest_features = init_msg.features.clone();
},
}
}
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let pending_msg_events = &mut channel_state.pending_msg_events;
channel_state.by_id.retain(|_, chan| {
if chan.get_counterparty_node_id() == *counterparty_node_id {
if !chan.have_received_message() {
// If we created this (outbound) channel while we were disconnected from the
// peer we probably failed to send the open_channel message, which is now
// lost. We can't have had anything pending related to this channel, so we just
// drop it.
false
} else {
pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
node_id: chan.get_counterparty_node_id(),
msg: chan.get_channel_reestablish(&self.logger),
});
true
}
} else { true }
});
//TODO: Also re-broadcast announcement_signatures
}
fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
if msg.channel_id == [0; 32] {
for chan in self.list_channels() {
if chan.remote_network_id == *counterparty_node_id {
// Untrusted messages from peer, we throw away the error if id points to a non-existent channel
let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
}
}
} else {
// Untrusted messages from peer, we throw away the error if id points to a non-existent channel
let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
}
}
2017-12-25 01:05:27 -05:00
}
/// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
/// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
struct PersistenceNotifier {
/// Users won't access the persistence_lock directly, but rather wait on its bool using
/// `wait_timeout` and `wait`.
persistence_lock: (Mutex<bool>, Condvar),
}
impl PersistenceNotifier {
fn new() -> Self {
Self {
persistence_lock: (Mutex::new(false), Condvar::new()),
}
}
fn wait(&self) {
loop {
let &(ref mtx, ref cvar) = &self.persistence_lock;
let mut guard = mtx.lock().unwrap();
guard = cvar.wait(guard).unwrap();
let result = *guard;
if result {
*guard = false;
return
}
}
}
#[cfg(any(test, feature = "allow_wallclock_use"))]
fn wait_timeout(&self, max_wait: Duration) -> bool {
let current_time = Instant::now();
loop {
let &(ref mtx, ref cvar) = &self.persistence_lock;
let mut guard = mtx.lock().unwrap();
guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
// Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
// desired wait time has actually passed, and if not then restart the loop with a reduced wait
// time. Note that this logic can be highly simplified through the use of
// `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
// 1.42.0.
let elapsed = current_time.elapsed();
let result = *guard;
if result || elapsed >= max_wait {
*guard = false;
return result;
}
match max_wait.checked_sub(elapsed) {
None => return result,
Some(_) => continue
}
}
}
// Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
fn notify(&self) {
let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
let mut persistence_lock = persist_mtx.lock().unwrap();
*persistence_lock = true;
mem::drop(persistence_lock);
cnd.notify_all();
}
}
const SERIALIZATION_VERSION: u8 = 1;
const MIN_SERIALIZATION_VERSION: u8 = 1;
impl Writeable for PendingHTLCInfo {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match &self.routing {
&PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
0u8.write(writer)?;
onion_packet.write(writer)?;
short_channel_id.write(writer)?;
},
&PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
1u8.write(writer)?;
payment_data.write(writer)?;
incoming_cltv_expiry.write(writer)?;
},
}
self.incoming_shared_secret.write(writer)?;
self.payment_hash.write(writer)?;
self.amt_to_forward.write(writer)?;
self.outgoing_cltv_value.write(writer)?;
Ok(())
}
}
impl Readable for PendingHTLCInfo {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
Ok(PendingHTLCInfo {
routing: match Readable::read(reader)? {
0u8 => PendingHTLCRouting::Forward {
onion_packet: Readable::read(reader)?,
short_channel_id: Readable::read(reader)?,
},
1u8 => PendingHTLCRouting::Receive {
payment_data: Readable::read(reader)?,
incoming_cltv_expiry: Readable::read(reader)?,
},
_ => return Err(DecodeError::InvalidValue),
},
incoming_shared_secret: Readable::read(reader)?,
payment_hash: Readable::read(reader)?,
amt_to_forward: Readable::read(reader)?,
outgoing_cltv_value: Readable::read(reader)?,
})
}
}
impl Writeable for HTLCFailureMsg {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
&HTLCFailureMsg::Relay(ref fail_msg) => {
0u8.write(writer)?;
fail_msg.write(writer)?;
},
&HTLCFailureMsg::Malformed(ref fail_msg) => {
1u8.write(writer)?;
fail_msg.write(writer)?;
}
}
Ok(())
}
}
impl Readable for HTLCFailureMsg {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
match <u8 as Readable>::read(reader)? {
0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
_ => Err(DecodeError::InvalidValue),
}
}
}
impl Writeable for PendingHTLCStatus {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
&PendingHTLCStatus::Forward(ref forward_info) => {
0u8.write(writer)?;
forward_info.write(writer)?;
},
&PendingHTLCStatus::Fail(ref fail_msg) => {
1u8.write(writer)?;
fail_msg.write(writer)?;
}
}
Ok(())
}
}
impl Readable for PendingHTLCStatus {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
match <u8 as Readable>::read(reader)? {
0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
_ => Err(DecodeError::InvalidValue),
}
}
}
impl_writeable!(HTLCPreviousHopData, 0, {
short_channel_id,
outpoint,
htlc_id,
incoming_packet_shared_secret
});
impl_writeable!(ClaimableHTLC, 0, {
prev_hop,
value,
payment_data,
cltv_expiry
});
impl Writeable for HTLCSource {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
&HTLCSource::PreviousHopData(ref hop_data) => {
0u8.write(writer)?;
hop_data.write(writer)?;
},
&HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
1u8.write(writer)?;
path.write(writer)?;
session_priv.write(writer)?;
first_hop_htlc_msat.write(writer)?;
}
}
Ok(())
}
}
impl Readable for HTLCSource {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
match <u8 as Readable>::read(reader)? {
0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
1 => Ok(HTLCSource::OutboundRoute {
path: Readable::read(reader)?,
session_priv: Readable::read(reader)?,
first_hop_htlc_msat: Readable::read(reader)?,
}),
_ => Err(DecodeError::InvalidValue),
}
}
}
impl Writeable for HTLCFailReason {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
&HTLCFailReason::LightningError { ref err } => {
0u8.write(writer)?;
err.write(writer)?;
},
&HTLCFailReason::Reason { ref failure_code, ref data } => {
1u8.write(writer)?;
failure_code.write(writer)?;
data.write(writer)?;
}
}
Ok(())
}
}
impl Readable for HTLCFailReason {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
match <u8 as Readable>::read(reader)? {
0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
1 => Ok(HTLCFailReason::Reason {
failure_code: Readable::read(reader)?,
data: Readable::read(reader)?,
}),
_ => Err(DecodeError::InvalidValue),
}
}
}
impl Writeable for HTLCForwardInfo {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
&HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
0u8.write(writer)?;
prev_short_channel_id.write(writer)?;
prev_funding_outpoint.write(writer)?;
prev_htlc_id.write(writer)?;
forward_info.write(writer)?;
},
&HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
1u8.write(writer)?;
htlc_id.write(writer)?;
err_packet.write(writer)?;
},
}
Ok(())
}
}
impl Readable for HTLCForwardInfo {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
match <u8 as Readable>::read(reader)? {
0 => Ok(HTLCForwardInfo::AddHTLC {
prev_short_channel_id: Readable::read(reader)?,
prev_funding_outpoint: Readable::read(reader)?,
prev_htlc_id: Readable::read(reader)?,
forward_info: Readable::read(reader)?,
}),
1 => Ok(HTLCForwardInfo::FailHTLC {
htlc_id: Readable::read(reader)?,
err_packet: Readable::read(reader)?,
}),
_ => Err(DecodeError::InvalidValue),
}
}
}
impl_writeable!(PendingInboundPayment, 0, {
payment_secret,
expiry_time,
payment_preimage,
min_value_msat
});
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
let _consistency_lock = self.total_consistency_lock.write().unwrap();
writer.write_all(&[SERIALIZATION_VERSION; 1])?;
writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
self.genesis_hash.write(writer)?;
{
let best_block = self.best_block.read().unwrap();
best_block.height().write(writer)?;
best_block.block_hash().write(writer)?;
}
let channel_state = self.channel_state.lock().unwrap();
let mut unfunded_channels = 0;
for (_, channel) in channel_state.by_id.iter() {
if !channel.is_funding_initiated() {
unfunded_channels += 1;
}
}
((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
for (_, channel) in channel_state.by_id.iter() {
if channel.is_funding_initiated() {
channel.write(writer)?;
}
}
(channel_state.forward_htlcs.len() as u64).write(writer)?;
for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
short_channel_id.write(writer)?;
(pending_forwards.len() as u64).write(writer)?;
for forward in pending_forwards {
forward.write(writer)?;
}
}
(channel_state.claimable_htlcs.len() as u64).write(writer)?;
for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
payment_hash.write(writer)?;
(previous_hops.len() as u64).write(writer)?;
for htlc in previous_hops.iter() {
htlc.write(writer)?;
}
}
let per_peer_state = self.per_peer_state.write().unwrap();
(per_peer_state.len() as u64).write(writer)?;
for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
peer_pubkey.write(writer)?;
let peer_state = peer_state_mutex.lock().unwrap();
peer_state.latest_features.write(writer)?;
}
let events = self.pending_events.lock().unwrap();
(events.len() as u64).write(writer)?;
for event in events.iter() {
event.write(writer)?;
}
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
let background_events = self.pending_background_events.lock().unwrap();
(background_events.len() as u64).write(writer)?;
for event in background_events.iter() {
match event {
BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
0u8.write(writer)?;
funding_txo.write(writer)?;
monitor_update.write(writer)?;
},
}
}
(self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
(self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
(pending_inbound_payments.len() as u64).write(writer)?;
for (hash, pending_payment) in pending_inbound_payments.iter() {
hash.write(writer)?;
pending_payment.write(writer)?;
}
Ok(())
}
}
/// Arguments for the creation of a ChannelManager that are not deserialized.
///
/// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
/// is:
/// 1) Deserialize all stored ChannelMonitors.
/// 2) Deserialize the ChannelManager by filling in this struct and calling:
/// <(BlockHash, ChannelManager)>::read(reader, args)
/// This may result in closing some Channels if the ChannelMonitor is newer than the stored
/// ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
/// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
/// way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
/// ChannelMonitor::get_funding_txo().
/// 4) Reconnect blocks on your ChannelMonitors.
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
/// 5) Disconnect/connect blocks on the ChannelManager.
/// 6) Move the ChannelMonitors into your local chain::Watch.
///
/// Note that the ordering of #4-6 is not of importance, however all three must occur before you
/// call any other methods on the newly-deserialized ChannelManager.
///
/// Note that because some channels may be closed during deserialization, it is critical that you
/// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
/// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
/// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
/// not force-close the same channels but consider them live), you may end up revoking a state for
/// which you've already broadcasted the transaction.
pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
/// The keys provider which will give us relevant keys. Some keys will be loaded during
/// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
/// signing data.
pub keys_manager: K,
/// The fee_estimator for use in the ChannelManager in the future.
///
/// No calls to the FeeEstimator will be made during deserialization.
pub fee_estimator: F,
/// The chain::Watch for use in the ChannelManager in the future.
///
/// No calls to the chain::Watch will be made during deserialization. It is assumed that
/// you have deserialized ChannelMonitors separately and will add them to your
/// chain::Watch after deserializing this ChannelManager.
pub chain_monitor: M,
/// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
/// used to broadcast the latest local commitment transactions of channels which must be
/// force-closed during deserialization.
pub tx_broadcaster: T,
/// The Logger for use in the ChannelManager and which may be used to log information during
/// deserialization.
pub logger: L,
/// Default settings used for new channels. Any existing channels will continue to use the
/// runtime settings which were stored when the ChannelManager was serialized.
pub default_config: UserConfig,
/// A map from channel funding outpoints to ChannelMonitors for those channels (ie
/// value.get_funding_txo() should be the key).
///
/// If a monitor is inconsistent with the channel state during deserialization the channel will
2019-01-24 16:41:51 +02:00
/// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
/// is true for missing channels as well. If there is a monitor missing for which we find
/// channel data Err(DecodeError::InvalidValue) will be returned.
///
/// In such cases the latest local transactions will be sent to the tx_broadcaster included in
/// this struct.
///
/// (C-not exported) because we have no HashMap bindings
pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
}
impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
/// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
/// HashMap for you. This is primarily useful for C bindings where it is not practical to
/// populate a HashMap directly from C.
pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
Self {
keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
}
}
}
// Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
// SipmleArcChannelManager type:
impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
Ok((blockhash, Arc::new(chan_manager)))
}
}
impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
let _ver: u8 = Readable::read(reader)?;
let min_ver: u8 = Readable::read(reader)?;
if min_ver > SERIALIZATION_VERSION {
return Err(DecodeError::UnknownVersion);
}
let genesis_hash: BlockHash = Readable::read(reader)?;
let best_block_height: u32 = Readable::read(reader)?;
let best_block_hash: BlockHash = Readable::read(reader)?;
let mut failed_htlcs = Vec::new();
let channel_count: u64 = Readable::read(reader)?;
let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
for _ in 0..channel_count {
let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
funding_txo_set.insert(funding_txo.clone());
if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
// If the channel is ahead of the monitor, return InvalidValue:
return Err(DecodeError::InvalidValue);
} else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
// But if the channel is behind of the monitor, close the channel:
let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
failed_htlcs.append(&mut new_failed_htlcs);
monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
} else {
if let Some(short_channel_id) = channel.get_short_channel_id() {
short_to_id.insert(short_channel_id, channel.channel_id());
}
by_id.insert(channel.channel_id(), channel);
}
} else {
return Err(DecodeError::InvalidValue);
}
}
for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
if !funding_txo_set.contains(funding_txo) {
monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
}
}
const MAX_ALLOC_SIZE: usize = 1024 * 64;
let forward_htlcs_count: u64 = Readable::read(reader)?;
let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
for _ in 0..forward_htlcs_count {
let short_channel_id = Readable::read(reader)?;
let pending_forwards_count: u64 = Readable::read(reader)?;
let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
for _ in 0..pending_forwards_count {
pending_forwards.push(Readable::read(reader)?);
}
forward_htlcs.insert(short_channel_id, pending_forwards);
}
let claimable_htlcs_count: u64 = Readable::read(reader)?;
let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
for _ in 0..claimable_htlcs_count {
let payment_hash = Readable::read(reader)?;
let previous_hops_len: u64 = Readable::read(reader)?;
let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
for _ in 0..previous_hops_len {
previous_hops.push(Readable::read(reader)?);
}
claimable_htlcs.insert(payment_hash, previous_hops);
}
let peer_count: u64 = Readable::read(reader)?;
let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
for _ in 0..peer_count {
let peer_pubkey = Readable::read(reader)?;
let peer_state = PeerState {
latest_features: Readable::read(reader)?,
};
per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
}
let event_count: u64 = Readable::read(reader)?;
let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
for _ in 0..event_count {
match MaybeReadable::read(reader)? {
Some(event) => pending_events_read.push(event),
None => continue,
}
}
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
let background_event_count: u64 = Readable::read(reader)?;
let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
for _ in 0..background_event_count {
match <u8 as Readable>::read(reader)? {
0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
_ => return Err(DecodeError::InvalidValue),
}
}
let last_node_announcement_serial: u32 = Readable::read(reader)?;
let highest_seen_timestamp: u32 = Readable::read(reader)?;
let pending_inbound_payment_count: u64 = Readable::read(reader)?;
let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
for _ in 0..pending_inbound_payment_count {
if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
return Err(DecodeError::InvalidValue);
}
}
let mut secp_ctx = Secp256k1::new();
secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
let channel_manager = ChannelManager {
genesis_hash,
fee_estimator: args.fee_estimator,
chain_monitor: args.chain_monitor,
tx_broadcaster: args.tx_broadcaster,
best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
channel_state: Mutex::new(ChannelHolder {
by_id,
short_to_id,
forward_htlcs,
claimable_htlcs,
pending_msg_events: Vec::new(),
}),
pending_inbound_payments: Mutex::new(pending_inbound_payments),
our_network_key: args.keys_manager.get_node_secret(),
our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
secp_ctx,
last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
per_peer_state: RwLock::new(per_peer_state),
pending_events: Mutex::new(pending_events_read),
Process monitor update events in block_[dis]connected asynchronously The instructions for `ChannelManagerReadArgs` indicate that you need to connect blocks on a newly-deserialized `ChannelManager` in a separate pass from the newly-deserialized `ChannelMontiors` as the `ChannelManager` assumes the ability to update the monitors during block [dis]connected events, saying that users need to: ``` 4) Reconnect blocks on your ChannelMonitors 5) Move the ChannelMonitors into your local chain::Watch. 6) Disconnect/connect blocks on the ChannelManager. ``` This is fine for `ChannelManager`'s purpose, but is very awkward for users. Notably, our new `lightning-block-sync` implemented on-load reconnection in the most obvious (and performant) way - connecting the blocks all at once, violating the `ChannelManagerReadArgs` API. Luckily, the events in question really don't need to be processed with the same urgency as most channel monitor updates. The only two monitor updates which can occur in block_[dis]connected is either a) in block_connected, we identify a now-confirmed commitment transaction, closing one of our channels, or b) in block_disconnected, the funding transaction is reorganized out of the chain, making our channel no longer funded. In the case of (a), sending a monitor update which broadcasts a conflicting holder commitment transaction is far from time-critical, though we should still ensure we do it. In the case of (b), we should try to broadcast our holder commitment transaction when we can, but within a few minutes is fine on the scale of block mining anyway. Note that in both cases cannot simply move the logic to ChannelMonitor::block[dis]_connected, as this could result in us broadcasting a commitment transaction from ChannelMonitor, then revoking the now-broadcasted state, and only then receiving the block_[dis]connected event in the ChannelManager. Thus, we move both events into an internal invent queue and process them in timer_chan_freshness_every_min().
2021-02-26 12:02:11 -05:00
pending_background_events: Mutex::new(pending_background_events_read),
total_consistency_lock: RwLock::new(()),
persistence_notifier: PersistenceNotifier::new(),
keys_manager: args.keys_manager,
logger: args.logger,
default_configuration: args.default_config,
};
for htlc_source in failed_htlcs.drain(..) {
channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
//TODO: Broadcast channel update for closed channels, but only after we've made a
//connection or two.
Ok((best_block_hash.clone(), channel_manager))
}
}
#[cfg(test)]
mod tests {
use ln::channelmanager::PersistenceNotifier;
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, Ordering};
use std::thread;
use std::time::Duration;
#[test]
fn test_wait_timeout() {
let persistence_notifier = Arc::new(PersistenceNotifier::new());
let thread_notifier = Arc::clone(&persistence_notifier);
let exit_thread = Arc::new(AtomicBool::new(false));
let exit_thread_clone = exit_thread.clone();
thread::spawn(move || {
loop {
let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
let mut persistence_lock = persist_mtx.lock().unwrap();
*persistence_lock = true;
cnd.notify_all();
if exit_thread_clone.load(Ordering::SeqCst) {
break
}
}
});
// Check that we can block indefinitely until updates are available.
let _ = persistence_notifier.wait();
// Check that the PersistenceNotifier will return after the given duration if updates are
// available.
loop {
if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
break
}
}
exit_thread.store(true, Ordering::SeqCst);
// Check that the PersistenceNotifier will return after the given duration even if no updates
// are available.
loop {
if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
break
}
}
}
}
#[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
pub mod bench {
use chain::Listen;
use chain::chainmonitor::ChainMonitor;
use chain::channelmonitor::Persist;
use chain::keysinterface::{KeysManager, InMemorySigner};
use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
use ln::features::InitFeatures;
use ln::functional_test_utils::*;
use ln::msgs::ChannelMessageHandler;
use routing::network_graph::NetworkGraph;
use routing::router::get_route;
use util::test_utils;
use util::config::UserConfig;
use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
use bitcoin::hashes::Hash;
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::{Block, BlockHeader, Transaction, TxOut};
use std::sync::Mutex;
use test::Bencher;
struct NodeHolder<'a, P: Persist<InMemorySigner>> {
node: &'a ChannelManager<InMemorySigner,
&'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
&'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
&'a test_utils::TestLogger, &'a P>,
&'a test_utils::TestBroadcaster, &'a KeysManager,
&'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
}
#[cfg(test)]
#[bench]
fn bench_sends(bench: &mut Bencher) {
bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
}
pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
// Do a simple benchmark of sending a payment back and forth between two nodes.
// Note that this is unrealistic as each payment send will require at least two fsync
// calls per node.
let network = bitcoin::Network::Testnet;
let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())};
let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
let mut config: UserConfig = Default::default();
config.own_channel_config.minimum_depth = 1;
let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
let seed_a = [1u8; 32];
let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
network,
best_block: BestBlock::from_genesis(network),
});
let node_a_holder = NodeHolder { node: &node_a };
let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
let seed_b = [2u8; 32];
let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
network,
best_block: BestBlock::from_genesis(network),
});
let node_b_holder = NodeHolder { node: &node_b };
node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
let tx;
if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
value: 8_000_000, script_pubkey: output_script,
}]};
node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
} else { panic!(); }
node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
let block = Block {
header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
txdata: vec![tx],
};
Listen::block_connected(&node_a, &block, 1);
Listen::block_connected(&node_b, &block, 1);
node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
let dummy_graph = NetworkGraph::new(genesis_hash);
macro_rules! send_payment {
($node_a: expr, $node_b: expr) => {
let usable_channels = $node_a.list_usable_channels();
let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), None, Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
let payment_preimage = PaymentPreimage([0; 32]);
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
$node_a.send_payment(&route, payment_hash, &None).unwrap();
let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
$node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
$node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
$node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
$node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
$node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, 10_000);
assert!($node_b.claim_funds(payment_preimage, &None, 10_000));
match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
MessageSendEvent::UpdateHTLCs { node_id, updates } => {
assert_eq!(node_id, $node_a.get_our_node_id());
$node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
$node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
},
_ => panic!("Failed to generate claim event"),
}
let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
$node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
$node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
$node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
}
}
bench.iter(|| {
send_payment!(node_a, node_b);
send_payment!(node_b, node_a);
});
}
}