2021-05-07 19:36:50 -04:00
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
2020-06-15 20:11:01 -04:00
2021-05-07 19:36:50 -04:00
//! Various utilities to assemble claimable outpoints in package of one or more transactions. Those
//! packages are attached metadata, guiding their aggregable or fee-bumping re-schedule. This file
//! also includes witness weight computation and fee computation methods.
use bitcoin ::blockdata ::constants ::WITNESS_SCALE_FACTOR ;
use bitcoin ::blockdata ::transaction ::{ TxOut , TxIn , Transaction , SigHashType } ;
use bitcoin ::blockdata ::transaction ::OutPoint as BitcoinOutPoint ;
use bitcoin ::blockdata ::script ::Script ;
use bitcoin ::hash_types ::Txid ;
use bitcoin ::secp256k1 ::key ::{ SecretKey , PublicKey } ;
use ln ::PaymentPreimage ;
use ln ::chan_utils ::{ TxCreationKeys , HTLCOutputInCommitment , HTLC_OUTPUT_IN_COMMITMENT_SIZE } ;
use ln ::chan_utils ;
2020-06-15 20:11:01 -04:00
use ln ::msgs ::DecodeError ;
2021-05-07 19:36:50 -04:00
use ln ::onchaintx ::OnchainTxHandler ;
2021-05-07 19:51:40 -04:00
use chain ::chaininterface ::{ FeeEstimator , ConfirmationTarget , MIN_RELAY_FEE_SAT_PER_1000_WEIGHT } ;
2021-05-07 19:36:50 -04:00
use chain ::keysinterface ::Sign ;
use util ::byte_utils ;
use util ::logger ::Logger ;
2020-06-15 20:11:01 -04:00
use util ::ser ::{ Readable , Writer , Writeable } ;
2021-05-07 19:36:50 -04:00
use std ::cmp ;
use std ::mem ;
use std ::ops ::Deref ;
const MAX_ALLOC_SIZE : usize = 64 * 1024 ;
// number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
pub ( crate ) const WEIGHT_REVOKED_OFFERED_HTLC : u64 = 1 + 1 + 73 + 1 + 33 + 1 + 133 ;
// number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
pub ( crate ) const WEIGHT_REVOKED_RECEIVED_HTLC : u64 = 1 + 1 + 73 + 1 + 33 + 1 + 139 ;
// number_of_witness_elements + sig_length + counterpartyhtlc_sig + preimage_length + preimage + witness_script_length + witness_script
pub ( crate ) const WEIGHT_OFFERED_HTLC : u64 = 1 + 1 + 73 + 1 + 32 + 1 + 133 ;
// number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
pub ( crate ) const WEIGHT_RECEIVED_HTLC : u64 = 1 + 1 + 73 + 1 + 1 + 1 + 139 ;
// number_of_witness_elements + sig_length + revocation_sig + true_length + op_true + witness_script_length + witness_script
pub ( crate ) const WEIGHT_REVOKED_OUTPUT : u64 = 1 + 1 + 73 + 1 + 1 + 1 + 77 ;
/// A struct to describe a revoked output and corresponding information to generate a solving
/// witness spending a commitment `to_local` output or a second-stage HTLC transaction output.
///
/// CSV and pubkeys are used as part of a witnessScript redeeming a balance output, amount is used
/// as part of the signature hash and revocation secret to generate a satisfying witness.
#[ derive(Clone, PartialEq) ]
pub ( crate ) struct RevokedOutput {
per_commitment_point : PublicKey ,
counterparty_delayed_payment_base_key : PublicKey ,
counterparty_htlc_base_key : PublicKey ,
per_commitment_key : SecretKey ,
weight : u64 ,
amount : u64 ,
on_counterparty_tx_csv : u16 ,
}
impl RevokedOutput {
pub ( crate ) fn build ( per_commitment_point : PublicKey , counterparty_delayed_payment_base_key : PublicKey , counterparty_htlc_base_key : PublicKey , per_commitment_key : SecretKey , amount : u64 , on_counterparty_tx_csv : u16 ) -> Self {
RevokedOutput {
per_commitment_point ,
counterparty_delayed_payment_base_key ,
counterparty_htlc_base_key ,
per_commitment_key ,
weight : WEIGHT_REVOKED_OUTPUT ,
amount ,
on_counterparty_tx_csv
}
}
}
impl_writeable! ( RevokedOutput , 33 * 3 + 32 + 8 + 8 + 2 , {
per_commitment_point ,
counterparty_delayed_payment_base_key ,
counterparty_htlc_base_key ,
per_commitment_key ,
weight ,
amount ,
on_counterparty_tx_csv
} ) ;
/// A struct to describe a revoked offered output and corresponding information to generate a
/// solving witness.
///
/// HTLCOuputInCommitment (hash timelock, direction) and pubkeys are used to generate a suitable
/// witnessScript.
///
/// CSV is used as part of a witnessScript redeeming a balance output, amount is used as part
/// of the signature hash and revocation secret to generate a satisfying witness.
#[ derive(Clone, PartialEq) ]
pub ( crate ) struct RevokedHTLCOutput {
per_commitment_point : PublicKey ,
counterparty_delayed_payment_base_key : PublicKey ,
counterparty_htlc_base_key : PublicKey ,
per_commitment_key : SecretKey ,
weight : u64 ,
amount : u64 ,
htlc : HTLCOutputInCommitment ,
}
impl RevokedHTLCOutput {
pub ( crate ) fn build ( per_commitment_point : PublicKey , counterparty_delayed_payment_base_key : PublicKey , counterparty_htlc_base_key : PublicKey , per_commitment_key : SecretKey , amount : u64 , htlc : HTLCOutputInCommitment ) -> Self {
let weight = if htlc . offered { WEIGHT_REVOKED_OFFERED_HTLC } else { WEIGHT_REVOKED_RECEIVED_HTLC } ;
RevokedHTLCOutput {
per_commitment_point ,
counterparty_delayed_payment_base_key ,
counterparty_htlc_base_key ,
per_commitment_key ,
weight ,
amount ,
htlc
}
}
}
impl_writeable! ( RevokedHTLCOutput , 33 * 3 + 32 + 8 + 8 + HTLC_OUTPUT_IN_COMMITMENT_SIZE , {
per_commitment_point ,
counterparty_delayed_payment_base_key ,
counterparty_htlc_base_key ,
per_commitment_key ,
weight ,
amount ,
htlc
} ) ;
/// A struct to describe a HTLC output on a counterparty commitment transaction.
///
/// HTLCOutputInCommitment (hash, timelock, directon) and pubkeys are used to generate a suitable
/// witnessScript.
///
/// The preimage is used as part of the witness.
#[ derive(Clone, PartialEq) ]
pub ( crate ) struct CounterpartyOfferedHTLCOutput {
per_commitment_point : PublicKey ,
counterparty_delayed_payment_base_key : PublicKey ,
counterparty_htlc_base_key : PublicKey ,
preimage : PaymentPreimage ,
htlc : HTLCOutputInCommitment
}
impl CounterpartyOfferedHTLCOutput {
pub ( crate ) fn build ( per_commitment_point : PublicKey , counterparty_delayed_payment_base_key : PublicKey , counterparty_htlc_base_key : PublicKey , preimage : PaymentPreimage , htlc : HTLCOutputInCommitment ) -> Self {
CounterpartyOfferedHTLCOutput {
per_commitment_point ,
counterparty_delayed_payment_base_key ,
counterparty_htlc_base_key ,
preimage ,
htlc
}
}
}
impl_writeable! ( CounterpartyOfferedHTLCOutput , 33 * 3 + 32 + HTLC_OUTPUT_IN_COMMITMENT_SIZE , {
per_commitment_point ,
counterparty_delayed_payment_base_key ,
counterparty_htlc_base_key ,
preimage ,
htlc
} ) ;
/// A struct to describe a HTLC output on a counterparty commitment transaction.
///
/// HTLCOutputInCommitment (hash, timelock, directon) and pubkeys are used to generate a suitable
/// witnessScript.
#[ derive(Clone, PartialEq) ]
pub ( crate ) struct CounterpartyReceivedHTLCOutput {
per_commitment_point : PublicKey ,
counterparty_delayed_payment_base_key : PublicKey ,
counterparty_htlc_base_key : PublicKey ,
htlc : HTLCOutputInCommitment
}
impl CounterpartyReceivedHTLCOutput {
pub ( crate ) fn build ( per_commitment_point : PublicKey , counterparty_delayed_payment_base_key : PublicKey , counterparty_htlc_base_key : PublicKey , htlc : HTLCOutputInCommitment ) -> Self {
CounterpartyReceivedHTLCOutput {
per_commitment_point ,
counterparty_delayed_payment_base_key ,
counterparty_htlc_base_key ,
htlc
}
}
}
impl_writeable! ( CounterpartyReceivedHTLCOutput , 33 * 3 + HTLC_OUTPUT_IN_COMMITMENT_SIZE , {
per_commitment_point ,
counterparty_delayed_payment_base_key ,
counterparty_htlc_base_key ,
htlc
} ) ;
/// A struct to describe a HTLC output on holder commitment transaction.
///
/// Either offered or received, the amount is always used as part of the bip143 sighash.
/// Preimage is only included as part of the witness in former case.
#[ derive(Clone, PartialEq) ]
pub ( crate ) struct HolderHTLCOutput {
preimage : Option < PaymentPreimage > ,
amount : u64 ,
}
impl HolderHTLCOutput {
pub ( crate ) fn build ( preimage : Option < PaymentPreimage > , amount : u64 ) -> Self {
HolderHTLCOutput {
preimage ,
amount
}
}
}
impl_writeable! ( HolderHTLCOutput , 0 , {
preimage ,
amount
} ) ;
/// A struct to describe the channel output on the funding transaction.
///
/// witnessScript is used as part of the witness redeeming the funding utxo.
#[ derive(Clone, PartialEq) ]
pub ( crate ) struct HolderFundingOutput {
funding_redeemscript : Script ,
}
impl HolderFundingOutput {
pub ( crate ) fn build ( funding_redeemscript : Script ) -> Self {
HolderFundingOutput {
funding_redeemscript ,
}
}
}
impl_writeable! ( HolderFundingOutput , 0 , {
funding_redeemscript
} ) ;
/// A wrapper encapsulating all in-protocol differing outputs types.
///
/// The generic API offers access to an outputs common attributes or allow transformation such as
/// finalizing an input claiming the output.
#[ derive(Clone, PartialEq) ]
pub ( crate ) enum PackageSolvingData {
RevokedOutput ( RevokedOutput ) ,
RevokedHTLCOutput ( RevokedHTLCOutput ) ,
CounterpartyOfferedHTLCOutput ( CounterpartyOfferedHTLCOutput ) ,
CounterpartyReceivedHTLCOutput ( CounterpartyReceivedHTLCOutput ) ,
HolderHTLCOutput ( HolderHTLCOutput ) ,
HolderFundingOutput ( HolderFundingOutput ) ,
}
impl PackageSolvingData {
fn amount ( & self ) -> u64 {
let amt = match self {
PackageSolvingData ::RevokedOutput ( ref outp ) = > { outp . amount } ,
PackageSolvingData ::RevokedHTLCOutput ( ref outp ) = > { outp . amount } ,
PackageSolvingData ::CounterpartyOfferedHTLCOutput ( ref outp ) = > { outp . htlc . amount_msat / 1000 } ,
PackageSolvingData ::CounterpartyReceivedHTLCOutput ( ref outp ) = > { outp . htlc . amount_msat / 1000 } ,
// Note: Currently, amounts of holder outputs spending witnesses aren't used
// as we can't malleate spending package to increase their feerate. This
// should change with the remaining anchor output patchset.
PackageSolvingData ::HolderHTLCOutput ( .. ) = > { 0 } ,
PackageSolvingData ::HolderFundingOutput ( .. ) = > { 0 } ,
} ;
amt
}
fn weight ( & self ) -> usize {
let weight = match self {
PackageSolvingData ::RevokedOutput ( ref outp ) = > { outp . weight as usize } ,
PackageSolvingData ::RevokedHTLCOutput ( ref outp ) = > { outp . weight as usize } ,
PackageSolvingData ::CounterpartyOfferedHTLCOutput ( .. ) = > { WEIGHT_OFFERED_HTLC as usize } ,
PackageSolvingData ::CounterpartyReceivedHTLCOutput ( .. ) = > { WEIGHT_RECEIVED_HTLC as usize } ,
// Note: Currently, weights of holder outputs spending witnesses aren't used
// as we can't malleate spending package to increase their feerate. This
// should change with the remaining anchor output patchset.
PackageSolvingData ::HolderHTLCOutput ( .. ) = > { debug_assert! ( false ) ; 0 } ,
PackageSolvingData ::HolderFundingOutput ( .. ) = > { debug_assert! ( false ) ; 0 } ,
} ;
weight
}
fn is_compatible ( & self , input : & PackageSolvingData ) -> bool {
match self {
PackageSolvingData ::RevokedOutput ( .. ) = > {
match input {
PackageSolvingData ::RevokedHTLCOutput ( .. ) = > { true } ,
PackageSolvingData ::RevokedOutput ( .. ) = > { true } ,
_ = > { false }
}
} ,
PackageSolvingData ::RevokedHTLCOutput ( .. ) = > {
match input {
PackageSolvingData ::RevokedOutput ( .. ) = > { true } ,
PackageSolvingData ::RevokedHTLCOutput ( .. ) = > { true } ,
_ = > { false }
}
} ,
_ = > { mem ::discriminant ( self ) = = mem ::discriminant ( & input ) }
}
}
fn finalize_input < Signer : Sign > ( & self , bumped_tx : & mut Transaction , i : usize , onchain_handler : & mut OnchainTxHandler < Signer > ) -> bool {
match self {
PackageSolvingData ::RevokedOutput ( ref outp ) = > {
if let Ok ( chan_keys ) = TxCreationKeys ::derive_new ( & onchain_handler . secp_ctx , & outp . per_commitment_point , & outp . counterparty_delayed_payment_base_key , & outp . counterparty_htlc_base_key , & onchain_handler . signer . pubkeys ( ) . revocation_basepoint , & onchain_handler . signer . pubkeys ( ) . htlc_basepoint ) {
let witness_script = chan_utils ::get_revokeable_redeemscript ( & chan_keys . revocation_key , outp . on_counterparty_tx_csv , & chan_keys . broadcaster_delayed_payment_key ) ;
//TODO: should we panic on signer failure ?
if let Ok ( sig ) = onchain_handler . signer . sign_justice_revoked_output ( & bumped_tx , i , outp . amount , & outp . per_commitment_key , & onchain_handler . secp_ctx ) {
bumped_tx . input [ i ] . witness . push ( sig . serialize_der ( ) . to_vec ( ) ) ;
bumped_tx . input [ i ] . witness [ 0 ] . push ( SigHashType ::All as u8 ) ;
bumped_tx . input [ i ] . witness . push ( vec! ( 1 ) ) ;
bumped_tx . input [ i ] . witness . push ( witness_script . clone ( ) . into_bytes ( ) ) ;
} else { return false ; }
}
} ,
PackageSolvingData ::RevokedHTLCOutput ( ref outp ) = > {
if let Ok ( chan_keys ) = TxCreationKeys ::derive_new ( & onchain_handler . secp_ctx , & outp . per_commitment_point , & outp . counterparty_delayed_payment_base_key , & outp . counterparty_htlc_base_key , & onchain_handler . signer . pubkeys ( ) . revocation_basepoint , & onchain_handler . signer . pubkeys ( ) . htlc_basepoint ) {
let witness_script = chan_utils ::get_htlc_redeemscript_with_explicit_keys ( & outp . htlc , & chan_keys . broadcaster_htlc_key , & chan_keys . countersignatory_htlc_key , & chan_keys . revocation_key ) ;
//TODO: should we panic on signer failure ?
if let Ok ( sig ) = onchain_handler . signer . sign_justice_revoked_htlc ( & bumped_tx , i , outp . amount , & outp . per_commitment_key , & outp . htlc , & onchain_handler . secp_ctx ) {
bumped_tx . input [ i ] . witness . push ( sig . serialize_der ( ) . to_vec ( ) ) ;
bumped_tx . input [ i ] . witness [ 0 ] . push ( SigHashType ::All as u8 ) ;
bumped_tx . input [ i ] . witness . push ( chan_keys . revocation_key . clone ( ) . serialize ( ) . to_vec ( ) ) ;
bumped_tx . input [ i ] . witness . push ( witness_script . clone ( ) . into_bytes ( ) ) ;
} else { return false ; }
}
} ,
PackageSolvingData ::CounterpartyOfferedHTLCOutput ( ref outp ) = > {
if let Ok ( chan_keys ) = TxCreationKeys ::derive_new ( & onchain_handler . secp_ctx , & outp . per_commitment_point , & outp . counterparty_delayed_payment_base_key , & outp . counterparty_htlc_base_key , & onchain_handler . signer . pubkeys ( ) . revocation_basepoint , & onchain_handler . signer . pubkeys ( ) . htlc_basepoint ) {
let witness_script = chan_utils ::get_htlc_redeemscript_with_explicit_keys ( & outp . htlc , & chan_keys . broadcaster_htlc_key , & chan_keys . countersignatory_htlc_key , & chan_keys . revocation_key ) ;
if let Ok ( sig ) = onchain_handler . signer . sign_counterparty_htlc_transaction ( & bumped_tx , i , & outp . htlc . amount_msat / 1000 , & outp . per_commitment_point , & outp . htlc , & onchain_handler . secp_ctx ) {
bumped_tx . input [ i ] . witness . push ( sig . serialize_der ( ) . to_vec ( ) ) ;
bumped_tx . input [ i ] . witness [ 0 ] . push ( SigHashType ::All as u8 ) ;
bumped_tx . input [ i ] . witness . push ( outp . preimage . 0. to_vec ( ) ) ;
bumped_tx . input [ i ] . witness . push ( witness_script . clone ( ) . into_bytes ( ) ) ;
}
}
} ,
PackageSolvingData ::CounterpartyReceivedHTLCOutput ( ref outp ) = > {
if let Ok ( chan_keys ) = TxCreationKeys ::derive_new ( & onchain_handler . secp_ctx , & outp . per_commitment_point , & outp . counterparty_delayed_payment_base_key , & outp . counterparty_htlc_base_key , & onchain_handler . signer . pubkeys ( ) . revocation_basepoint , & onchain_handler . signer . pubkeys ( ) . htlc_basepoint ) {
let witness_script = chan_utils ::get_htlc_redeemscript_with_explicit_keys ( & outp . htlc , & chan_keys . broadcaster_htlc_key , & chan_keys . countersignatory_htlc_key , & chan_keys . revocation_key ) ;
bumped_tx . lock_time = outp . htlc . cltv_expiry ; // Right now we don't aggregate time-locked transaction, if we do we should set lock_time before to avoid breaking hash computation
if let Ok ( sig ) = onchain_handler . signer . sign_counterparty_htlc_transaction ( & bumped_tx , i , & outp . htlc . amount_msat / 1000 , & outp . per_commitment_point , & outp . htlc , & onchain_handler . secp_ctx ) {
bumped_tx . input [ i ] . witness . push ( sig . serialize_der ( ) . to_vec ( ) ) ;
bumped_tx . input [ i ] . witness [ 0 ] . push ( SigHashType ::All as u8 ) ;
// Due to BIP146 (MINIMALIF) this must be a zero-length element to relay.
bumped_tx . input [ i ] . witness . push ( vec! [ ] ) ;
bumped_tx . input [ i ] . witness . push ( witness_script . clone ( ) . into_bytes ( ) ) ;
}
}
} ,
_ = > { panic! ( " API Error! " ) ; }
}
true
}
fn get_finalized_tx < Signer : Sign > ( & self , outpoint : & BitcoinOutPoint , onchain_handler : & mut OnchainTxHandler < Signer > ) -> Option < Transaction > {
match self {
PackageSolvingData ::HolderHTLCOutput ( ref outp ) = > { return onchain_handler . get_fully_signed_htlc_tx ( outpoint , & outp . preimage ) ; }
PackageSolvingData ::HolderFundingOutput ( ref outp ) = > { return Some ( onchain_handler . get_fully_signed_holder_tx ( & outp . funding_redeemscript ) ) ; }
_ = > { panic! ( " API Error! " ) ; }
}
}
}
impl Writeable for PackageSolvingData {
fn write < W : Writer > ( & self , writer : & mut W ) -> Result < ( ) , ::std ::io ::Error > {
match self {
PackageSolvingData ::RevokedOutput ( ref revoked_outp ) = > {
0 u8 . write ( writer ) ? ;
revoked_outp . write ( writer ) ? ;
} ,
PackageSolvingData ::RevokedHTLCOutput ( ref revoked_outp ) = > {
1 u8 . write ( writer ) ? ;
revoked_outp . write ( writer ) ? ;
} ,
PackageSolvingData ::CounterpartyOfferedHTLCOutput ( ref counterparty_outp ) = > {
2 u8 . write ( writer ) ? ;
counterparty_outp . write ( writer ) ? ;
} ,
PackageSolvingData ::CounterpartyReceivedHTLCOutput ( ref counterparty_outp ) = > {
3 u8 . write ( writer ) ? ;
counterparty_outp . write ( writer ) ? ;
} ,
PackageSolvingData ::HolderHTLCOutput ( ref holder_outp ) = > {
4 u8 . write ( writer ) ? ;
holder_outp . write ( writer ) ? ;
} ,
PackageSolvingData ::HolderFundingOutput ( ref funding_outp ) = > {
5 u8 . write ( writer ) ? ;
funding_outp . write ( writer ) ? ;
}
}
Ok ( ( ) )
}
}
impl Readable for PackageSolvingData {
fn read < R : ::std ::io ::Read > ( reader : & mut R ) -> Result < Self , DecodeError > {
let byte = < u8 as Readable > ::read ( reader ) ? ;
let solving_data = match byte {
0 = > {
PackageSolvingData ::RevokedOutput ( Readable ::read ( reader ) ? )
} ,
1 = > {
PackageSolvingData ::RevokedHTLCOutput ( Readable ::read ( reader ) ? )
} ,
2 = > {
PackageSolvingData ::CounterpartyOfferedHTLCOutput ( Readable ::read ( reader ) ? )
} ,
3 = > {
PackageSolvingData ::CounterpartyReceivedHTLCOutput ( Readable ::read ( reader ) ? )
} ,
4 = > {
PackageSolvingData ::HolderHTLCOutput ( Readable ::read ( reader ) ? )
} ,
5 = > {
PackageSolvingData ::HolderFundingOutput ( Readable ::read ( reader ) ? )
}
_ = > return Err ( DecodeError ::UnknownVersion )
} ;
Ok ( solving_data )
}
}
/// A malleable package might be aggregated with other packages to save on fees.
/// A untractable package has been counter-signed and aggregable will break cached counterparty
/// signatures.
#[ derive(Clone, PartialEq) ]
pub ( crate ) enum PackageMalleability {
Malleable ,
Untractable ,
}
/// A structure to describe a package content that is generated by ChannelMonitor and
/// used by OnchainTxHandler to generate and broadcast transactions settling onchain claims.
///
/// A package is defined as one or more transactions claiming onchain outputs in reaction
/// to confirmation of a channel transaction. Those packages might be aggregated to save on
/// fees, if satisfaction of outputs's witnessScript let's us do so.
///
/// As packages are time-sensitive, we fee-bump and rebroadcast them at scheduled intervals.
/// Failing to confirm a package translate as a loss of funds for the user.
#[ derive(Clone, PartialEq) ]
pub struct PackageTemplate {
// List of onchain outputs and solving data to generate satisfying witnesses.
inputs : Vec < ( BitcoinOutPoint , PackageSolvingData ) > ,
// Packages are deemed as malleable if we have local knwoledge of at least one set of
// private keys yielding a satisfying witnesses. Malleability implies that we can aggregate
// packages among them to save on fees or rely on RBF to bump their feerates.
// Untractable packages have been counter-signed and thus imply that we can't aggregate
// them without breaking signatures. Fee-bumping strategy will also rely on CPFP.
malleability : PackageMalleability ,
// Block height after which the earlier-output belonging to this package is mature for a
// competing claim by the counterparty. As our chain tip becomes nearer from the timelock,
// the fee-bumping frequency will increase. See `OnchainTxHandler::get_height_timer`.
soonest_conf_deadline : u32 ,
// Determines if this package can be aggregated.
// Timelocked outputs belonging to the same transaction might have differing
// satisfying heights. Picking up the later height among the output set would be a valid
// aggregable strategy but it comes with at least 2 trade-offs :
// * earlier-output fund are going to take longer to come back
// * CLTV delta backing up a corresponding HTLC on an upstream channel could be swallowed
// by the requirement of the later-output part of the set
// For now, we mark such timelocked outputs as non-aggregable, though we might introduce
// smarter aggregable strategy in the future.
aggregable : bool ,
// Cache of package feerate committed at previous (re)broadcast. If bumping resources
// (either claimed output value or external utxo), it will keep increasing until holder
// or counterparty successful claim.
feerate_previous : u64 ,
// Cache of next height at which fee-bumping and rebroadcast will be attempted. In
// the future, we might abstract it to an observed mempool fluctuation.
height_timer : Option < u32 > ,
// Confirmation height of the claimed outputs set transaction. In case of reorg reaching
// it, we wipe out and forget the package.
height_original : u32 ,
}
impl PackageTemplate {
pub ( crate ) fn is_malleable ( & self ) -> bool {
self . malleability = = PackageMalleability ::Malleable
}
pub ( crate ) fn timelock ( & self ) -> u32 {
self . soonest_conf_deadline
}
pub ( crate ) fn aggregable ( & self ) -> bool {
self . aggregable
}
pub ( crate ) fn feerate ( & self ) -> u64 {
self . feerate_previous
}
pub ( crate ) fn set_feerate ( & mut self , new_feerate : u64 ) {
self . feerate_previous = new_feerate ;
}
pub ( crate ) fn timer ( & self ) -> Option < u32 > {
if let Some ( ref timer ) = self . height_timer {
return Some ( * timer ) ;
}
None
}
pub ( crate ) fn set_timer ( & mut self , new_timer : Option < u32 > ) {
self . height_timer = new_timer ;
}
pub ( crate ) fn outpoints ( & self ) -> Vec < & BitcoinOutPoint > {
self . inputs . iter ( ) . map ( | ( o , _ ) | o ) . collect ( )
}
pub ( crate ) fn split_package ( & mut self , split_outp : & BitcoinOutPoint ) -> Option < PackageTemplate > {
match self . malleability {
PackageMalleability ::Malleable = > {
let mut split_package = None ;
let timelock = self . soonest_conf_deadline ;
let aggregable = self . aggregable ;
let feerate_previous = self . feerate_previous ;
let height_timer = self . height_timer ;
let height_original = self . height_original ;
self . inputs . retain ( | outp | {
if * split_outp = = outp . 0 {
split_package = Some ( PackageTemplate {
inputs : vec ! [ ( outp . 0 , outp . 1. clone ( ) ) ] ,
malleability : PackageMalleability ::Malleable ,
soonest_conf_deadline : timelock ,
aggregable ,
feerate_previous ,
height_timer ,
height_original ,
} ) ;
return false ;
}
return true ;
} ) ;
return split_package ;
} ,
_ = > {
// Note, we may try to split on remote transaction for
// which we don't have a competing one (HTLC-Success before
// timelock expiration). This explain we don't panic!
// We should refactor OnchainTxHandler::block_connected to
// only test equality on competing claims.
return None ;
}
}
}
pub ( crate ) fn merge_package ( & mut self , mut merge_from : PackageTemplate ) {
assert_eq! ( self . height_original , merge_from . height_original ) ;
if self . malleability = = PackageMalleability ::Untractable | | merge_from . malleability = = PackageMalleability ::Untractable {
panic! ( " Merging template on untractable packages " ) ;
}
if ! self . aggregable | | ! merge_from . aggregable {
panic! ( " Merging non aggregatable packages " ) ;
}
if let Some ( ( _ , lead_input ) ) = self . inputs . first ( ) {
for ( _ , v ) in merge_from . inputs . iter ( ) {
if ! lead_input . is_compatible ( v ) { panic! ( " Merging outputs from differing types ! " ) ; }
}
} else { panic! ( " Merging template on an empty package " ) ; }
for ( k , v ) in merge_from . inputs . drain ( .. ) {
self . inputs . push ( ( k , v ) ) ;
}
//TODO: verify coverage and sanity?
if self . soonest_conf_deadline > merge_from . soonest_conf_deadline {
self . soonest_conf_deadline = merge_from . soonest_conf_deadline ;
}
if self . feerate_previous > merge_from . feerate_previous {
self . feerate_previous = merge_from . feerate_previous ;
}
self . height_timer = cmp ::min ( self . height_timer , merge_from . height_timer ) ;
}
pub ( crate ) fn package_amount ( & self ) -> u64 {
let mut amounts = 0 ;
for ( _ , outp ) in self . inputs . iter ( ) {
amounts + = outp . amount ( ) ;
}
amounts
}
pub ( crate ) fn package_weight ( & self , destination_script : & Script ) -> usize {
let mut inputs_weight = 0 ;
let mut witnesses_weight = 2 ; // count segwit flags
for ( _ , outp ) in self . inputs . iter ( ) {
// previous_out_point: 36 bytes ; var_int: 1 byte ; sequence: 4 bytes
inputs_weight + = 41 * WITNESS_SCALE_FACTOR ;
witnesses_weight + = outp . weight ( ) ;
}
// version: 4 bytes ; count_tx_in: 1 byte ; count_tx_out: 1 byte ; lock_time: 4 bytes
let transaction_weight = 10 * WITNESS_SCALE_FACTOR ;
// value: 8 bytes ; var_int: 1 byte ; pk_script: `destination_script.len()`
let output_weight = ( 8 + 1 + destination_script . len ( ) ) * WITNESS_SCALE_FACTOR ;
inputs_weight + witnesses_weight + transaction_weight + output_weight
}
pub ( crate ) fn finalize_package < L : Deref , Signer : Sign > ( & self , onchain_handler : & mut OnchainTxHandler < Signer > , value : u64 , destination_script : Script , logger : & L ) -> Option < Transaction >
where L ::Target : Logger ,
{
match self . malleability {
PackageMalleability ::Malleable = > {
let mut bumped_tx = Transaction {
version : 2 ,
lock_time : 0 ,
input : vec ! [ ] ,
output : vec ! [ TxOut {
script_pubkey : destination_script ,
value ,
} ] ,
} ;
for ( outpoint , _ ) in self . inputs . iter ( ) {
bumped_tx . input . push ( TxIn {
previous_output : * outpoint ,
script_sig : Script ::new ( ) ,
sequence : 0xfffffffd ,
witness : Vec ::new ( ) ,
} ) ;
}
for ( i , ( outpoint , out ) ) in self . inputs . iter ( ) . enumerate ( ) {
log_trace! ( logger , " Adding claiming input for outpoint {}:{} " , outpoint . txid , outpoint . vout ) ;
if ! out . finalize_input ( & mut bumped_tx , i , onchain_handler ) { return None ; }
}
log_trace! ( logger , " Finalized transaction {} ready to broadcast " , bumped_tx . txid ( ) ) ;
return Some ( bumped_tx ) ;
} ,
PackageMalleability ::Untractable = > {
if let Some ( ( outpoint , outp ) ) = self . inputs . first ( ) {
if let Some ( final_tx ) = outp . get_finalized_tx ( outpoint , onchain_handler ) {
log_trace! ( logger , " Adding claiming input for outpoint {}:{} " , outpoint . txid , outpoint . vout ) ;
log_trace! ( logger , " Finalized transaction {} ready to broadcast " , final_tx . txid ( ) ) ;
return Some ( final_tx ) ;
}
return None ;
} else { panic! ( " API Error: Package must not be inputs empty " ) ; }
} ,
}
}
pub ( crate ) fn build_package ( txid : Txid , vout : u32 , input_solving_data : PackageSolvingData , soonest_conf_deadline : u32 , aggregable : bool , height_original : u32 ) -> Self {
let malleability = match input_solving_data {
PackageSolvingData ::RevokedOutput ( .. ) = > { PackageMalleability ::Malleable } ,
PackageSolvingData ::RevokedHTLCOutput ( .. ) = > { PackageMalleability ::Malleable } ,
PackageSolvingData ::CounterpartyOfferedHTLCOutput ( .. ) = > { PackageMalleability ::Malleable } ,
PackageSolvingData ::CounterpartyReceivedHTLCOutput ( .. ) = > { PackageMalleability ::Malleable } ,
PackageSolvingData ::HolderHTLCOutput ( .. ) = > { PackageMalleability ::Untractable } ,
PackageSolvingData ::HolderFundingOutput ( .. ) = > { PackageMalleability ::Untractable } ,
} ;
let mut inputs = Vec ::with_capacity ( 1 ) ;
inputs . push ( ( BitcoinOutPoint { txid , vout } , input_solving_data ) ) ;
PackageTemplate {
inputs ,
malleability ,
soonest_conf_deadline ,
aggregable ,
feerate_previous : 0 ,
height_timer : None ,
height_original ,
}
}
}
impl Writeable for PackageTemplate {
fn write < W : Writer > ( & self , writer : & mut W ) -> Result < ( ) , ::std ::io ::Error > {
writer . write_all ( & byte_utils ::be64_to_array ( self . inputs . len ( ) as u64 ) ) ? ;
for ( ref outpoint , ref rev_outp ) in self . inputs . iter ( ) {
outpoint . write ( writer ) ? ;
rev_outp . write ( writer ) ? ;
}
self . soonest_conf_deadline . write ( writer ) ? ;
self . feerate_previous . write ( writer ) ? ;
self . height_timer . write ( writer ) ? ;
self . height_original . write ( writer ) ? ;
Ok ( ( ) )
}
}
impl Readable for PackageTemplate {
fn read < R : ::std ::io ::Read > ( reader : & mut R ) -> Result < Self , DecodeError > {
let inputs_count = < u64 as Readable > ::read ( reader ) ? ;
let mut inputs : Vec < ( BitcoinOutPoint , PackageSolvingData ) > = Vec ::with_capacity ( cmp ::min ( inputs_count as usize , MAX_ALLOC_SIZE / 128 ) ) ;
for _ in 0 .. inputs_count {
let outpoint = Readable ::read ( reader ) ? ;
let rev_outp = Readable ::read ( reader ) ? ;
inputs . push ( ( outpoint , rev_outp ) ) ;
}
let ( malleability , aggregable ) = if let Some ( ( _ , lead_input ) ) = inputs . first ( ) {
match lead_input {
PackageSolvingData ::RevokedOutput ( .. ) = > { ( PackageMalleability ::Malleable , true ) } ,
PackageSolvingData ::RevokedHTLCOutput ( .. ) = > { ( PackageMalleability ::Malleable , true ) } ,
PackageSolvingData ::CounterpartyOfferedHTLCOutput ( .. ) = > { ( PackageMalleability ::Malleable , true ) } ,
PackageSolvingData ::CounterpartyReceivedHTLCOutput ( .. ) = > { ( PackageMalleability ::Malleable , false ) } ,
PackageSolvingData ::HolderHTLCOutput ( .. ) = > { ( PackageMalleability ::Untractable , false ) } ,
PackageSolvingData ::HolderFundingOutput ( .. ) = > { ( PackageMalleability ::Untractable , false ) } ,
}
} else { return Err ( DecodeError ::InvalidValue ) ; } ;
let soonest_conf_deadline = Readable ::read ( reader ) ? ;
let feerate_previous = Readable ::read ( reader ) ? ;
let height_timer = Readable ::read ( reader ) ? ;
let height_original = Readable ::read ( reader ) ? ;
Ok ( PackageTemplate {
inputs ,
malleability ,
soonest_conf_deadline ,
aggregable ,
feerate_previous ,
height_timer ,
height_original ,
} )
}
}
2021-05-07 19:51:40 -04:00
/// Attempt to propose a bumping fee for a transaction from its spent output's values and predicted
/// weight. We start with the highest priority feerate returned by the node's fee estimator then
/// fall-back to lower priorities until we have enough value available to suck from.
///
/// If the proposed fee is less than the available spent output's values, we return the proposed
/// fee and the corresponding updated feerate. If the proposed fee is equal or more than the
/// available spent output's values, we return nothing
fn compute_fee_from_spent_amounts < F : Deref , L : Deref > ( input_amounts : u64 , predicted_weight : usize , fee_estimator : & F , logger : & L ) -> Option < ( u64 , u64 ) >
where F ::Target : FeeEstimator ,
L ::Target : Logger ,
{
let mut updated_feerate = fee_estimator . get_est_sat_per_1000_weight ( ConfirmationTarget ::HighPriority ) as u64 ;
let mut fee = updated_feerate * ( predicted_weight as u64 ) / 1000 ;
if input_amounts < = fee {
updated_feerate = fee_estimator . get_est_sat_per_1000_weight ( ConfirmationTarget ::Normal ) as u64 ;
fee = updated_feerate * ( predicted_weight as u64 ) / 1000 ;
if input_amounts < = fee {
updated_feerate = fee_estimator . get_est_sat_per_1000_weight ( ConfirmationTarget ::Background ) as u64 ;
fee = updated_feerate * ( predicted_weight as u64 ) / 1000 ;
if input_amounts < = fee {
log_error! ( logger , " Failed to generate an on-chain punishment tx as even low priority fee ({} sat) was more than the entire claim balance ({} sat) " ,
fee , input_amounts ) ;
None
} else {
log_warn! ( logger , " Used low priority fee for on-chain punishment tx as high priority fee was more than the entire claim balance ({} sat) " ,
input_amounts ) ;
Some ( ( fee , updated_feerate ) )
}
} else {
log_warn! ( logger , " Used medium priority fee for on-chain punishment tx as high priority fee was more than the entire claim balance ({} sat) " ,
input_amounts ) ;
Some ( ( fee , updated_feerate ) )
}
} else {
Some ( ( fee , updated_feerate ) )
}
}
/// Attempt to propose a bumping fee for a transaction from its spent output's values and predicted
/// weight. If feerates proposed by the fee-estimator have been increasing since last fee-bumping
/// attempt, use them. Otherwise, blindly bump the feerate by 25% of the previous feerate. We also
/// verify that those bumping heuristics respect BIP125 rules 3) and 4) and if required adjust
/// the new fee to meet the RBF policy requirement.
fn feerate_bump < F : Deref , L : Deref > ( predicted_weight : usize , input_amounts : u64 , previous_feerate : u64 , fee_estimator : & F , logger : & L ) -> Option < ( u64 , u64 ) >
where F ::Target : FeeEstimator ,
L ::Target : Logger ,
{
// If old feerate inferior to actual one given back by Fee Estimator, use it to compute new fee...
let new_fee = if let Some ( ( new_fee , _ ) ) = compute_fee_from_spent_amounts ( input_amounts , predicted_weight , fee_estimator , logger ) {
let updated_feerate = new_fee / ( predicted_weight as u64 * 1000 ) ;
if updated_feerate > previous_feerate {
new_fee
} else {
// ...else just increase the previous feerate by 25% (because that's a nice number)
let new_fee = previous_feerate * ( predicted_weight as u64 ) / 750 ;
if input_amounts < = new_fee {
log_trace! ( logger , " Can't 25% bump new claiming tx, amount {} is too small " , input_amounts ) ;
return None ;
}
new_fee
}
} else {
log_trace! ( logger , " Can't new-estimation bump new claiming tx, amount {} is too small " , input_amounts ) ;
return None ;
} ;
let previous_fee = previous_feerate * ( predicted_weight as u64 ) / 1000 ;
let min_relay_fee = MIN_RELAY_FEE_SAT_PER_1000_WEIGHT * ( predicted_weight as u64 ) / 1000 ;
// BIP 125 Opt-in Full Replace-by-Fee Signaling
// * 3. The replacement transaction pays an absolute fee of at least the sum paid by the original transactions.
// * 4. The replacement transaction must also pay for its own bandwidth at or above the rate set by the node's minimum relay fee setting.
let new_fee = if new_fee < previous_fee + min_relay_fee {
new_fee + previous_fee + min_relay_fee - new_fee
} else {
new_fee
} ;
Some ( ( new_fee , new_fee * 1000 / ( predicted_weight as u64 ) ) )
}
/// Deduce a new proposed fee from the claiming transaction output value.
/// If the new proposed fee is superior to the consumed outpoint's value, burn everything in miner's
/// fee to deter counterparties attacker.
pub ( crate ) fn compute_output_value < F : Deref , L : Deref > ( predicted_weight : usize , input_amounts : u64 , previous_feerate : u64 , fee_estimator : & F , logger : & L ) -> Option < ( u64 , u64 ) >
where F ::Target : FeeEstimator ,
L ::Target : Logger ,
{
// If old feerate is 0, first iteration of this claim, use normal fee calculation
if previous_feerate ! = 0 {
if let Some ( ( new_fee , feerate ) ) = feerate_bump ( predicted_weight , input_amounts , previous_feerate , fee_estimator , logger ) {
// If new computed fee is superior at the whole claimable amount burn all in fees
if new_fee > input_amounts {
return Some ( ( 0 , feerate ) ) ;
} else {
return Some ( ( input_amounts - new_fee , feerate ) ) ;
}
}
} else {
if let Some ( ( new_fee , feerate ) ) = compute_fee_from_spent_amounts ( input_amounts , predicted_weight , fee_estimator , logger ) {
return Some ( ( input_amounts - new_fee , feerate ) ) ;
}
}
None
}