rust-lightning/src/ln/router.rs

924 lines
34 KiB
Rust
Raw Normal View History

2017-12-25 01:05:27 -05:00
use secp256k1::key::PublicKey;
use secp256k1::{Secp256k1,Message};
use bitcoin::util::hash::Sha256dHash;
use ln::msgs::{HandleError,RoutingMessageHandler,MsgEncodable,NetAddress,GlobalFeatures};
use ln::msgs;
use std::cmp;
use std::sync::RwLock;
use std::collections::{HashMap,BinaryHeap};
use std::collections::hash_map::Entry;
/// A hop in a route
#[derive(Clone)]
2017-12-25 01:05:27 -05:00
pub struct RouteHop {
pub pubkey: PublicKey,
/// The channel that should be used from the previous hop to reach this node.
pub short_channel_id: u64,
/// The fee taken on this hop. For the last hop, this should be the full value of the payment.
pub fee_msat: u64,
/// The CLTV delta added for this hop. For the last hop, this should be the full CLTV value
/// expected at the destination, NOT a delta.
pub cltv_expiry_delta: u32,
}
/// A route from us through the network to a destination
#[derive(Clone)]
2017-12-25 01:05:27 -05:00
pub struct Route {
/// The list of hops, NOT INCLUDING our own, where the last hop is the destination. Thus, this
/// must always be at least length one. By protocol rules, this may not currently exceed 20 in
/// length.
pub hops: Vec<RouteHop>,
}
struct DirectionalChannelInfo {
src_node_id: PublicKey,
last_update: u32,
enabled: bool,
cltv_expiry_delta: u16,
htlc_minimum_msat: u64,
fee_base_msat: u32,
fee_proportional_millionths: u32,
}
struct ChannelInfo {
features: GlobalFeatures,
one_to_two: DirectionalChannelInfo,
two_to_one: DirectionalChannelInfo,
}
struct NodeInfo {
#[cfg(feature = "non_bitcoin_chain_hash_routing")]
channels: Vec<(u64, Sha256dHash)>,
#[cfg(not(feature = "non_bitcoin_chain_hash_routing"))]
channels: Vec<u64>,
lowest_inbound_channel_fee_base_msat: u32,
lowest_inbound_channel_fee_proportional_millionths: u32,
features: GlobalFeatures,
last_update: u32,
rgb: [u8; 3],
alias: [u8; 32],
addresses: Vec<NetAddress>,
}
struct NetworkMap {
#[cfg(feature = "non_bitcoin_chain_hash_routing")]
channels: HashMap<(u64, Sha256dHash), ChannelInfo>,
#[cfg(not(feature = "non_bitcoin_chain_hash_routing"))]
channels: HashMap<u64, ChannelInfo>,
our_node_id: PublicKey,
nodes: HashMap<PublicKey, NodeInfo>,
}
impl NetworkMap {
#[cfg(feature = "non_bitcoin_chain_hash_routing")]
#[inline]
fn get_key(short_channel_id: u64, chain_hash: Sha256dHash) -> (u64, Sha256dHash) {
(short_channel_id, chain_hash)
}
#[cfg(not(feature = "non_bitcoin_chain_hash_routing"))]
#[inline]
fn get_key(short_channel_id: u64, _: Sha256dHash) -> u64 {
short_channel_id
}
}
/// A channel descriptor which provides a last-hop route to get_route
pub struct RouteHint {
pub src_node_id: PublicKey,
pub short_channel_id: u64,
pub fee_base_msat: u64,
pub fee_proportional_millionths: u32,
pub cltv_expiry_delta: u16,
pub htlc_minimum_msat: u64,
}
/// Tracks a view of the network, receiving updates from peers and generating Routes to
/// payment destinations.
pub struct Router {
secp_ctx: Secp256k1,
network_map: RwLock<NetworkMap>,
}
macro_rules! secp_verify_sig {
( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr ) => {
match $secp_ctx.verify($msg, $sig, $pubkey) {
Ok(_) => {},
Err(_) => return Err(HandleError{err: "Invalid signature from remote node", msg: None}),
}
};
}
impl RoutingMessageHandler for Router {
fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), HandleError> {
let msg_hash = Message::from_slice(&Sha256dHash::from_data(&msg.contents.encode()[..])[..]).unwrap();
secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id);
let mut network = self.network_map.write().unwrap();
match network.nodes.get_mut(&msg.contents.node_id) {
None => Err(HandleError{err: "No existing channels for node_announcement", msg: None}),
Some(node) => {
if node.last_update >= msg.contents.timestamp {
return Err(HandleError{err: "Update older than last processed update", msg: None});
}
node.features = msg.contents.features.clone();
node.last_update = msg.contents.timestamp;
node.rgb = msg.contents.rgb;
node.alias = msg.contents.alias;
node.addresses = msg.contents.addresses.clone();
Ok(())
}
}
}
fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, HandleError> {
let msg_hash = Message::from_slice(&Sha256dHash::from_data(&msg.contents.encode()[..])[..]).unwrap();
secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1);
secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2);
secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1);
secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2);
//TODO: Call blockchain thing to ask if the short_channel_id is valid
//TODO: Only allow bitcoin chain_hash
if msg.contents.features.requires_unknown_bits() {
return Err(HandleError{err: "Channel announcement required unknown feature flags", msg: None});
}
let mut network = self.network_map.write().unwrap();
match network.channels.entry(NetworkMap::get_key(msg.contents.short_channel_id, msg.contents.chain_hash)) {
Entry::Occupied(_) => {
//TODO: because asking the blockchain if short_channel_id is valid is only optional
//in the blockchain API, we need to handle it smartly here, though its unclear
//exactly how...
return Err(HandleError{err: "Already have knowledge of channel", msg: None})
},
Entry::Vacant(entry) => {
entry.insert(ChannelInfo {
features: msg.contents.features.clone(),
one_to_two: DirectionalChannelInfo {
src_node_id: msg.contents.node_id_1.clone(),
last_update: 0,
enabled: false,
cltv_expiry_delta: u16::max_value(),
htlc_minimum_msat: u64::max_value(),
fee_base_msat: u32::max_value(),
fee_proportional_millionths: u32::max_value(),
},
two_to_one: DirectionalChannelInfo {
src_node_id: msg.contents.node_id_2.clone(),
last_update: 0,
enabled: false,
cltv_expiry_delta: u16::max_value(),
htlc_minimum_msat: u64::max_value(),
fee_base_msat: u32::max_value(),
fee_proportional_millionths: u32::max_value(),
}
});
}
};
macro_rules! add_channel_to_node {
( $node_id: expr ) => {
match network.nodes.entry($node_id) {
Entry::Occupied(node_entry) => {
node_entry.into_mut().channels.push(NetworkMap::get_key(msg.contents.short_channel_id, msg.contents.chain_hash));
},
Entry::Vacant(node_entry) => {
node_entry.insert(NodeInfo {
channels: vec!(NetworkMap::get_key(msg.contents.short_channel_id, msg.contents.chain_hash)),
lowest_inbound_channel_fee_base_msat: u32::max_value(),
lowest_inbound_channel_fee_proportional_millionths: u32::max_value(),
features: GlobalFeatures::new(),
last_update: 0,
rgb: [0; 3],
alias: [0; 32],
addresses: Vec::new(),
});
}
}
};
}
add_channel_to_node!(msg.contents.node_id_1);
add_channel_to_node!(msg.contents.node_id_2);
Ok(!msg.contents.features.supports_unknown_bits())
}
fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<(), HandleError> {
let mut network = self.network_map.write().unwrap();
let dest_node_id;
let chan_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
let chan_was_enabled;
match network.channels.get_mut(&NetworkMap::get_key(msg.contents.short_channel_id, msg.contents.chain_hash)) {
None => return Err(HandleError{err: "Couldn't find channel for update", msg: None}),
Some(channel) => {
macro_rules! maybe_update_channel_info {
( $target: expr) => {
if $target.last_update >= msg.contents.timestamp {
return Err(HandleError{err: "Update older than last processed update", msg: None});
}
chan_was_enabled = $target.enabled;
$target.last_update = msg.contents.timestamp;
$target.enabled = chan_enabled;
$target.cltv_expiry_delta = msg.contents.cltv_expiry_delta;
$target.htlc_minimum_msat = msg.contents.htlc_minimum_msat;
$target.fee_base_msat = msg.contents.fee_base_msat;
$target.fee_proportional_millionths = msg.contents.fee_proportional_millionths;
}
}
let msg_hash = Message::from_slice(&Sha256dHash::from_data(&msg.contents.encode()[..])[..]).unwrap();
if msg.contents.flags & 1 == 1 {
dest_node_id = channel.one_to_two.src_node_id.clone();
secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &channel.two_to_one.src_node_id);
maybe_update_channel_info!(channel.two_to_one);
} else {
dest_node_id = channel.two_to_one.src_node_id.clone();
secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &channel.one_to_two.src_node_id);
maybe_update_channel_info!(channel.one_to_two);
}
}
}
if chan_enabled {
let node = network.nodes.get_mut(&dest_node_id).unwrap();
node.lowest_inbound_channel_fee_base_msat = cmp::min(node.lowest_inbound_channel_fee_base_msat, msg.contents.fee_base_msat);
node.lowest_inbound_channel_fee_proportional_millionths = cmp::min(node.lowest_inbound_channel_fee_proportional_millionths, msg.contents.fee_proportional_millionths);
} else if chan_was_enabled {
let mut lowest_inbound_channel_fee_base_msat = u32::max_value();
let mut lowest_inbound_channel_fee_proportional_millionths = u32::max_value();
{
let node = network.nodes.get(&dest_node_id).unwrap();
for chan_id in node.channels.iter() {
let chan = network.channels.get(chan_id).unwrap();
if chan.one_to_two.src_node_id == dest_node_id {
lowest_inbound_channel_fee_base_msat = cmp::min(lowest_inbound_channel_fee_base_msat, chan.two_to_one.fee_base_msat);
lowest_inbound_channel_fee_proportional_millionths = cmp::min(lowest_inbound_channel_fee_proportional_millionths, chan.two_to_one.fee_proportional_millionths);
} else {
lowest_inbound_channel_fee_base_msat = cmp::min(lowest_inbound_channel_fee_base_msat, chan.one_to_two.fee_base_msat);
lowest_inbound_channel_fee_proportional_millionths = cmp::min(lowest_inbound_channel_fee_proportional_millionths, chan.one_to_two.fee_proportional_millionths);
}
}
}
//TODO: satisfy the borrow-checker without a double-map-lookup :(
let mut_node = network.nodes.get_mut(&dest_node_id).unwrap();
mut_node.lowest_inbound_channel_fee_base_msat = lowest_inbound_channel_fee_base_msat;
mut_node.lowest_inbound_channel_fee_proportional_millionths = lowest_inbound_channel_fee_proportional_millionths;
}
Ok(())
}
}
#[derive(Eq, PartialEq)]
struct RouteGraphNode {
pubkey: PublicKey,
lowest_fee_to_peer_through_node: u64,
}
impl cmp::Ord for RouteGraphNode {
fn cmp(&self, other: &RouteGraphNode) -> cmp::Ordering {
other.lowest_fee_to_peer_through_node.cmp(&self.lowest_fee_to_peer_through_node)
.then_with(|| other.pubkey.serialize().cmp(&self.pubkey.serialize()))
}
}
impl cmp::PartialOrd for RouteGraphNode {
fn partial_cmp(&self, other: &RouteGraphNode) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Router {
pub fn new(our_pubkey: PublicKey) -> Router {
let mut nodes = HashMap::new();
nodes.insert(our_pubkey.clone(), NodeInfo {
channels: Vec::new(),
lowest_inbound_channel_fee_base_msat: u32::max_value(),
lowest_inbound_channel_fee_proportional_millionths: u32::max_value(),
features: GlobalFeatures::new(),
last_update: 0,
rgb: [0; 3],
alias: [0; 32],
addresses: Vec::new(),
});
Router {
secp_ctx: Secp256k1::new(),
network_map: RwLock::new(NetworkMap {
channels: HashMap::new(),
our_node_id: our_pubkey,
nodes: nodes,
}),
}
}
/// Marks a node as having failed a route. This will avoid re-using the node in routes for now,
/// with an expotnential decay in node "badness". Note that there is deliberately no
/// mark_channel_bad as a node may simply lie and suggest that an upstream channel from it is
/// what failed the route and not the node itself. Instead, setting the blamed_upstream_node
/// boolean will reduce the penalty, returning the node to usability faster. If the node is
/// behaving correctly, it will disable the failing channel and we will use it again next time.
pub fn mark_node_bad(&self, _node_id: &PublicKey, _blamed_upstream_node: bool) {
unimplemented!();
}
/// Gets a route from us to the given target node.
/// Extra routing hops between known nodes and the target will be used if they are included in
/// last_hops.
/// The fees on channels from us to next-hops are ignored (as they are assumed to all be
/// equal), however the enabled/disabled bit on such channels as well as the htlc_minimum_msat
/// *is* checked as they may change based on the receiving node.
pub fn get_route(&self, target: &PublicKey, last_hops: &Vec<RouteHint>, final_value_msat: u64, final_cltv: u32) -> Result<Route, HandleError> {
// TODO: Obviously *only* using total fee cost sucks. We should consider weighting by
// uptime/success in using a node in the past.
let network = self.network_map.read().unwrap();
if *target == network.our_node_id {
return Err(HandleError{err: "Cannot generate a route to ourselves", msg: None});
}
// We do a dest-to-source Dijkstra's sorting by each node's distance from the destination
// plus the minimum per-HTLC fee to get from it to another node (aka "shitty A*").
// TODO: There are a few tweaks we could do, including possibly pre-calculating more stuff
// to use as the A* heuristic beyond just the cost to get one node further than the current
// one.
let mut targets = BinaryHeap::new(); //TODO: Do we care about switching to eg Fibbonaci heap?
let mut dist = HashMap::with_capacity(network.nodes.len());
for (key, node) in network.nodes.iter() {
dist.insert(key.clone(), (u64::max_value(),
node.lowest_inbound_channel_fee_base_msat as u64,
node.lowest_inbound_channel_fee_proportional_millionths as u64,
RouteHop {
pubkey: PublicKey::new(),
short_channel_id: 0,
fee_msat: 0,
cltv_expiry_delta: 0,
}));
}
macro_rules! add_entry {
// Adds entry which goes from the node pointed to by $directional_info to
// $dest_node_id over the channel with id $chan_id with fees described in
// $directional_info.
( $chan_id: expr, $dest_node_id: expr, $directional_info: expr, $starting_fee_msat: expr ) => {
//TODO: Explore simply adding fee to hit htlc_minimum_msat
if $starting_fee_msat as u64 + final_value_msat > $directional_info.htlc_minimum_msat {
let new_fee = $directional_info.fee_base_msat as u64 + ($starting_fee_msat + final_value_msat) * ($directional_info.fee_proportional_millionths as u64) / 1000000;
let mut total_fee = $starting_fee_msat as u64;
let old_entry = dist.get_mut(&$directional_info.src_node_id).unwrap();
if $directional_info.src_node_id != network.our_node_id {
// Ignore new_fee for channel-from-us as we assume all channels-from-us
// will have the same effective-fee
total_fee += new_fee;
total_fee += old_entry.2 * (final_value_msat + total_fee) / 1000000 + old_entry.1;
}
let new_graph_node = RouteGraphNode {
pubkey: $directional_info.src_node_id,
lowest_fee_to_peer_through_node: total_fee,
};
if old_entry.0 > total_fee {
targets.push(new_graph_node);
old_entry.0 = total_fee;
old_entry.3 = RouteHop {
pubkey: $dest_node_id.clone(),
short_channel_id: $chan_id.clone(),
fee_msat: new_fee, // This field is ignored on the last-hop anyway
cltv_expiry_delta: $directional_info.cltv_expiry_delta as u32,
}
}
}
};
}
macro_rules! add_entries_to_cheapest_to_target_node {
( $node: expr, $node_id: expr, $fee_to_target_msat: expr ) => {
for chan_id in $node.channels.iter() {
let chan = network.channels.get(chan_id).unwrap();
if chan.one_to_two.src_node_id == *$node_id {
// ie $node is one, ie next hop in A* is two, via the two_to_one channel
if chan.two_to_one.enabled {
add_entry!(chan_id, chan.one_to_two.src_node_id, chan.two_to_one, $fee_to_target_msat);
}
} else {
if chan.one_to_two.enabled {
add_entry!(chan_id, chan.two_to_one.src_node_id, chan.one_to_two, $fee_to_target_msat);
}
}
}
};
}
match network.nodes.get(target) {
None => {},
Some(node) => {
add_entries_to_cheapest_to_target_node!(node, target, 0);
},
}
for hop in last_hops.iter() {
if network.nodes.get(&hop.src_node_id).is_some() {
add_entry!(hop.short_channel_id, target, hop, 0);
}
}
while let Some(RouteGraphNode { pubkey, lowest_fee_to_peer_through_node }) = targets.pop() {
if pubkey == network.our_node_id {
let mut res = vec!(dist.remove(&network.our_node_id).unwrap().3);
while res.last().unwrap().pubkey != *target {
let new_entry = dist.remove(&res.last().unwrap().pubkey).unwrap().3;
res.last_mut().unwrap().fee_msat = new_entry.fee_msat;
res.last_mut().unwrap().cltv_expiry_delta = new_entry.cltv_expiry_delta;
res.push(new_entry);
}
res.last_mut().unwrap().fee_msat = final_value_msat;
res.last_mut().unwrap().cltv_expiry_delta = final_cltv;
return Ok(Route {
hops: res
});
}
match network.nodes.get(&pubkey) {
None => {},
Some(node) => {
let mut fee = lowest_fee_to_peer_through_node - node.lowest_inbound_channel_fee_base_msat as u64;
fee -= node.lowest_inbound_channel_fee_proportional_millionths as u64 * (fee + final_value_msat) / 1000000;
add_entries_to_cheapest_to_target_node!(node, &pubkey, fee);
},
}
}
Err(HandleError{err: "Failed to find a path to the given destination", msg: None})
}
}
#[cfg(test)]
mod tests {
use ln::router::{Router,NodeInfo,NetworkMap,ChannelInfo,DirectionalChannelInfo,RouteHint};
use ln::msgs::GlobalFeatures;
use bitcoin::util::misc::hex_bytes;
use bitcoin::util::hash::Sha256dHash;
use secp256k1::key::{PublicKey,SecretKey};
use secp256k1::Secp256k1;
#[test]
fn route_test() {
let secp_ctx = Secp256k1::new();
let our_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&secp_ctx, &hex_bytes("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap()).unwrap();
let router = Router::new(our_id);
// Build network from our_id to node8:
//
// -1(1)2- node1 -1(3)2-
// / \
// our_id - node3
// \ /
// -1(2)2- node2 -1(4)2-
//
//
// chan1 1-to-2: disabled
// chan1 2-to-1: enabled, 0 fee
//
// chan2 1-to-2: enabled, ignored fee
// chan2 2-to-1: enabled, 0 fee
//
// chan3 1-to-2: enabled, 0 fee
// chan3 2-to-1: enabled, 100 msat fee
//
// chan4 1-to-2: enabled, 100% fee
// chan4 2-to-1: enabled, 0 fee
//
//
//
// -1(5)2- node4 -1(8)2--
// | 2 |
// | (11) |
// / 1 \
// node3--1(6)2- node5 -1(9)2--- node7 (not in global route map)
// \ /
// -1(7)2- node6 -1(10)2-
//
// chan5 1-to-2: enabled, 100 msat fee
// chan5 2-to-1: enabled, 0 fee
//
// chan6 1-to-2: enabled, 0 fee
// chan6 2-to-1: enabled, 0 fee
//
// chan7 1-to-2: enabled, 100% fee
// chan7 2-to-1: enabled, 0 fee
//
// chan8 1-to-2: enabled, variable fee (0 then 1000 msat)
// chan8 2-to-1: enabled, 0 fee
//
// chan9 1-to-2: enabled, 1001 msat fee
// chan9 2-to-1: enabled, 0 fee
//
// chan10 1-to-2: enabled, 0 fee
// chan10 2-to-1: enabled, 0 fee
//
// chan11 1-to-2: enabled, 0 fee
// chan11 2-to-1: enabled, 0 fee
let node1 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&secp_ctx, &hex_bytes("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap()).unwrap();
let node2 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&secp_ctx, &hex_bytes("0303030303030303030303030303030303030303030303030303030303030303").unwrap()[..]).unwrap()).unwrap();
let node3 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&secp_ctx, &hex_bytes("0404040404040404040404040404040404040404040404040404040404040404").unwrap()[..]).unwrap()).unwrap();
let node4 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&secp_ctx, &hex_bytes("0505050505050505050505050505050505050505050505050505050505050505").unwrap()[..]).unwrap()).unwrap();
let node5 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&secp_ctx, &hex_bytes("0606060606060606060606060606060606060606060606060606060606060606").unwrap()[..]).unwrap()).unwrap();
let node6 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&secp_ctx, &hex_bytes("0707070707070707070707070707070707070707070707070707070707070707").unwrap()[..]).unwrap()).unwrap();
let node7 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&secp_ctx, &hex_bytes("0808080808080808080808080808080808080808080808080808080808080808").unwrap()[..]).unwrap()).unwrap();
let zero_hash = Sha256dHash::from_data(&[0; 32]);
{
let mut network = router.network_map.write().unwrap();
network.nodes.insert(node1.clone(), NodeInfo {
channels: vec!(NetworkMap::get_key(1, zero_hash.clone()), NetworkMap::get_key(3, zero_hash.clone())),
lowest_inbound_channel_fee_base_msat: 100,
lowest_inbound_channel_fee_proportional_millionths: 0,
features: GlobalFeatures::new(),
last_update: 1,
rgb: [0; 3],
alias: [0; 32],
addresses: Vec::new(),
});
network.channels.insert(NetworkMap::get_key(1, zero_hash.clone()), ChannelInfo {
features: GlobalFeatures::new(),
one_to_two: DirectionalChannelInfo {
src_node_id: our_id.clone(),
last_update: 0,
enabled: false,
cltv_expiry_delta: u16::max_value(), // This value should be ignored
htlc_minimum_msat: 0,
fee_base_msat: u32::max_value(), // This value should be ignored
fee_proportional_millionths: u32::max_value(), // This value should be ignored
}, two_to_one: DirectionalChannelInfo {
src_node_id: node1.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
fee_base_msat: 0,
fee_proportional_millionths: 0,
},
});
network.nodes.insert(node2.clone(), NodeInfo {
channels: vec!(NetworkMap::get_key(2, zero_hash.clone()), NetworkMap::get_key(4, zero_hash.clone())),
lowest_inbound_channel_fee_base_msat: 0,
lowest_inbound_channel_fee_proportional_millionths: 0,
features: GlobalFeatures::new(),
last_update: 1,
rgb: [0; 3],
alias: [0; 32],
addresses: Vec::new(),
});
network.channels.insert(NetworkMap::get_key(2, zero_hash.clone()), ChannelInfo {
features: GlobalFeatures::new(),
one_to_two: DirectionalChannelInfo {
src_node_id: our_id.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: u16::max_value(), // This value should be ignored
htlc_minimum_msat: 0,
fee_base_msat: u32::max_value(), // This value should be ignored
fee_proportional_millionths: u32::max_value(), // This value should be ignored
}, two_to_one: DirectionalChannelInfo {
src_node_id: node2.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
fee_base_msat: 0,
fee_proportional_millionths: 0,
},
});
network.nodes.insert(node3.clone(), NodeInfo {
channels: vec!(
NetworkMap::get_key(3, zero_hash.clone()),
NetworkMap::get_key(4, zero_hash.clone()),
NetworkMap::get_key(5, zero_hash.clone()),
NetworkMap::get_key(6, zero_hash.clone()),
NetworkMap::get_key(7, zero_hash.clone())),
lowest_inbound_channel_fee_base_msat: 0,
lowest_inbound_channel_fee_proportional_millionths: 0,
features: GlobalFeatures::new(),
last_update: 1,
rgb: [0; 3],
alias: [0; 32],
addresses: Vec::new(),
});
network.channels.insert(NetworkMap::get_key(3, zero_hash.clone()), ChannelInfo {
features: GlobalFeatures::new(),
one_to_two: DirectionalChannelInfo {
src_node_id: node1.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: (3 << 8) | 1,
htlc_minimum_msat: 0,
fee_base_msat: 0,
fee_proportional_millionths: 0,
}, two_to_one: DirectionalChannelInfo {
src_node_id: node3.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: (3 << 8) | 2,
htlc_minimum_msat: 0,
fee_base_msat: 100,
fee_proportional_millionths: 0,
},
});
network.channels.insert(NetworkMap::get_key(4, zero_hash.clone()), ChannelInfo {
features: GlobalFeatures::new(),
one_to_two: DirectionalChannelInfo {
src_node_id: node2.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: (4 << 8) | 1,
htlc_minimum_msat: 0,
fee_base_msat: 0,
fee_proportional_millionths: 1000000,
}, two_to_one: DirectionalChannelInfo {
src_node_id: node3.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: (4 << 8) | 2,
htlc_minimum_msat: 0,
fee_base_msat: 0,
fee_proportional_millionths: 0,
},
});
network.nodes.insert(node4.clone(), NodeInfo {
channels: vec!(NetworkMap::get_key(5, zero_hash.clone()), NetworkMap::get_key(11, zero_hash.clone())),
lowest_inbound_channel_fee_base_msat: 0,
lowest_inbound_channel_fee_proportional_millionths: 0,
features: GlobalFeatures::new(),
last_update: 1,
rgb: [0; 3],
alias: [0; 32],
addresses: Vec::new(),
});
network.channels.insert(NetworkMap::get_key(5, zero_hash.clone()), ChannelInfo {
features: GlobalFeatures::new(),
one_to_two: DirectionalChannelInfo {
src_node_id: node3.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: (5 << 8) | 1,
htlc_minimum_msat: 0,
fee_base_msat: 100,
fee_proportional_millionths: 0,
}, two_to_one: DirectionalChannelInfo {
src_node_id: node4.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: (5 << 8) | 2,
htlc_minimum_msat: 0,
fee_base_msat: 0,
fee_proportional_millionths: 0,
},
});
network.nodes.insert(node5.clone(), NodeInfo {
channels: vec!(NetworkMap::get_key(6, zero_hash.clone()), NetworkMap::get_key(11, zero_hash.clone())),
lowest_inbound_channel_fee_base_msat: 0,
lowest_inbound_channel_fee_proportional_millionths: 0,
features: GlobalFeatures::new(),
last_update: 1,
rgb: [0; 3],
alias: [0; 32],
addresses: Vec::new(),
});
network.channels.insert(NetworkMap::get_key(6, zero_hash.clone()), ChannelInfo {
features: GlobalFeatures::new(),
one_to_two: DirectionalChannelInfo {
src_node_id: node3.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: (6 << 8) | 1,
htlc_minimum_msat: 0,
fee_base_msat: 0,
fee_proportional_millionths: 0,
}, two_to_one: DirectionalChannelInfo {
src_node_id: node5.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: (6 << 8) | 2,
htlc_minimum_msat: 0,
fee_base_msat: 0,
fee_proportional_millionths: 0,
},
});
network.channels.insert(NetworkMap::get_key(11, zero_hash.clone()), ChannelInfo {
features: GlobalFeatures::new(),
one_to_two: DirectionalChannelInfo {
src_node_id: node5.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: (11 << 8) | 1,
htlc_minimum_msat: 0,
fee_base_msat: 0,
fee_proportional_millionths: 0,
}, two_to_one: DirectionalChannelInfo {
src_node_id: node4.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: (11 << 8) | 2,
htlc_minimum_msat: 0,
fee_base_msat: 0,
fee_proportional_millionths: 0,
},
});
network.nodes.insert(node6.clone(), NodeInfo {
channels: vec!(NetworkMap::get_key(7, zero_hash.clone())),
lowest_inbound_channel_fee_base_msat: 0,
lowest_inbound_channel_fee_proportional_millionths: 0,
features: GlobalFeatures::new(),
last_update: 1,
rgb: [0; 3],
alias: [0; 32],
addresses: Vec::new(),
});
network.channels.insert(NetworkMap::get_key(7, zero_hash.clone()), ChannelInfo {
features: GlobalFeatures::new(),
one_to_two: DirectionalChannelInfo {
src_node_id: node3.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: (7 << 8) | 1,
htlc_minimum_msat: 0,
fee_base_msat: 0,
fee_proportional_millionths: 1000000,
}, two_to_one: DirectionalChannelInfo {
src_node_id: node6.clone(),
last_update: 0,
enabled: true,
cltv_expiry_delta: (7 << 8) | 2,
htlc_minimum_msat: 0,
fee_base_msat: 0,
fee_proportional_millionths: 0,
},
});
}
{ // Simple route to 3 via 2
let route = router.get_route(&node3, &Vec::new(), 100, 42).unwrap();
assert_eq!(route.hops.len(), 2);
assert_eq!(route.hops[0].pubkey, node2);
assert_eq!(route.hops[0].short_channel_id, 2);
assert_eq!(route.hops[0].fee_msat, 100);
assert_eq!(route.hops[0].cltv_expiry_delta, (4 << 8) | 1);
assert_eq!(route.hops[1].pubkey, node3);
assert_eq!(route.hops[1].short_channel_id, 4);
assert_eq!(route.hops[1].fee_msat, 100);
assert_eq!(route.hops[1].cltv_expiry_delta, 42);
}
{ // Route to 1 via 2 and 3 because our channel to 1 is disabled
let route = router.get_route(&node1, &Vec::new(), 100, 42).unwrap();
assert_eq!(route.hops.len(), 3);
assert_eq!(route.hops[0].pubkey, node2);
assert_eq!(route.hops[0].short_channel_id, 2);
assert_eq!(route.hops[0].fee_msat, 200);
assert_eq!(route.hops[0].cltv_expiry_delta, (4 << 8) | 1);
assert_eq!(route.hops[1].pubkey, node3);
assert_eq!(route.hops[1].short_channel_id, 4);
assert_eq!(route.hops[1].fee_msat, 100);
assert_eq!(route.hops[1].cltv_expiry_delta, (3 << 8) | 2);
assert_eq!(route.hops[2].pubkey, node1);
assert_eq!(route.hops[2].short_channel_id, 3);
assert_eq!(route.hops[2].fee_msat, 100);
assert_eq!(route.hops[2].cltv_expiry_delta, 42);
}
let mut last_hops = vec!(RouteHint {
src_node_id: node4.clone(),
short_channel_id: 8,
fee_base_msat: 0,
fee_proportional_millionths: 0,
cltv_expiry_delta: (8 << 8) | 1,
htlc_minimum_msat: 0,
}, RouteHint {
src_node_id: node5.clone(),
short_channel_id: 9,
fee_base_msat: 1001,
fee_proportional_millionths: 0,
cltv_expiry_delta: (9 << 8) | 1,
htlc_minimum_msat: 0,
}, RouteHint {
src_node_id: node6.clone(),
short_channel_id: 10,
fee_base_msat: 0,
fee_proportional_millionths: 0,
cltv_expiry_delta: (10 << 8) | 1,
htlc_minimum_msat: 0,
});
{ // Simple test across 2, 3, 5, and 4 via a last_hop channel
let route = router.get_route(&node7, &last_hops, 100, 42).unwrap();
assert_eq!(route.hops.len(), 5);
assert_eq!(route.hops[0].pubkey, node2);
assert_eq!(route.hops[0].short_channel_id, 2);
assert_eq!(route.hops[0].fee_msat, 100);
assert_eq!(route.hops[0].cltv_expiry_delta, (4 << 8) | 1);
assert_eq!(route.hops[1].pubkey, node3);
assert_eq!(route.hops[1].short_channel_id, 4);
assert_eq!(route.hops[1].fee_msat, 0);
assert_eq!(route.hops[1].cltv_expiry_delta, (6 << 8) | 1);
assert_eq!(route.hops[2].pubkey, node5);
assert_eq!(route.hops[2].short_channel_id, 6);
assert_eq!(route.hops[2].fee_msat, 0);
assert_eq!(route.hops[2].cltv_expiry_delta, (11 << 8) | 1);
assert_eq!(route.hops[3].pubkey, node4);
assert_eq!(route.hops[3].short_channel_id, 11);
assert_eq!(route.hops[3].fee_msat, 0);
assert_eq!(route.hops[3].cltv_expiry_delta, (8 << 8) | 1);
assert_eq!(route.hops[4].pubkey, node7);
assert_eq!(route.hops[4].short_channel_id, 8);
assert_eq!(route.hops[4].fee_msat, 100);
assert_eq!(route.hops[4].cltv_expiry_delta, 42);
}
last_hops[0].fee_base_msat = 1000;
{ // Revert to via 6 as the fee on 8 goes up
let route = router.get_route(&node7, &last_hops, 100, 42).unwrap();
assert_eq!(route.hops.len(), 4);
assert_eq!(route.hops[0].pubkey, node2);
assert_eq!(route.hops[0].short_channel_id, 2);
assert_eq!(route.hops[0].fee_msat, 200); // fee increased as its % of value transferred across node
assert_eq!(route.hops[0].cltv_expiry_delta, (4 << 8) | 1);
assert_eq!(route.hops[1].pubkey, node3);
assert_eq!(route.hops[1].short_channel_id, 4);
assert_eq!(route.hops[1].fee_msat, 100);
assert_eq!(route.hops[1].cltv_expiry_delta, (7 << 8) | 1);
assert_eq!(route.hops[2].pubkey, node6);
assert_eq!(route.hops[2].short_channel_id, 7);
assert_eq!(route.hops[2].fee_msat, 0);
assert_eq!(route.hops[2].cltv_expiry_delta, (10 << 8) | 1);
assert_eq!(route.hops[3].pubkey, node7);
assert_eq!(route.hops[3].short_channel_id, 10);
assert_eq!(route.hops[3].fee_msat, 100);
assert_eq!(route.hops[3].cltv_expiry_delta, 42);
}
{ // ...but still use 8 for larger payments as 6 has a variable feerate
let route = router.get_route(&node7, &last_hops, 2000, 42).unwrap();
assert_eq!(route.hops.len(), 5);
assert_eq!(route.hops[0].pubkey, node2);
assert_eq!(route.hops[0].short_channel_id, 2);
assert_eq!(route.hops[0].fee_msat, 3000);
assert_eq!(route.hops[0].cltv_expiry_delta, (4 << 8) | 1);
assert_eq!(route.hops[1].pubkey, node3);
assert_eq!(route.hops[1].short_channel_id, 4);
assert_eq!(route.hops[1].fee_msat, 0);
assert_eq!(route.hops[1].cltv_expiry_delta, (6 << 8) | 1);
assert_eq!(route.hops[2].pubkey, node5);
assert_eq!(route.hops[2].short_channel_id, 6);
assert_eq!(route.hops[2].fee_msat, 0);
assert_eq!(route.hops[2].cltv_expiry_delta, (11 << 8) | 1);
assert_eq!(route.hops[3].pubkey, node4);
assert_eq!(route.hops[3].short_channel_id, 11);
assert_eq!(route.hops[3].fee_msat, 1000);
assert_eq!(route.hops[3].cltv_expiry_delta, (8 << 8) | 1);
assert_eq!(route.hops[4].pubkey, node7);
assert_eq!(route.hops[4].short_channel_id, 8);
assert_eq!(route.hops[4].fee_msat, 2000);
assert_eq!(route.hops[4].cltv_expiry_delta, 42);
}
}
}