rust-lightning/lightning/src/chain/package.rs

813 lines
34 KiB
Rust
Raw Normal View History

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Various utilities to assemble claimable outpoints in package of one or more transactions. Those
//! packages are attached metadata, guiding their aggregable or fee-bumping re-schedule. This file
//! also includes witness weight computation and fee computation methods.
use bitcoin::blockdata::constants::WITNESS_SCALE_FACTOR;
use bitcoin::blockdata::transaction::{TxOut,TxIn, Transaction, SigHashType};
use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
use bitcoin::blockdata::script::Script;
use bitcoin::hash_types::Txid;
use bitcoin::secp256k1::key::{SecretKey,PublicKey};
use ln::PaymentPreimage;
use ln::chan_utils::{TxCreationKeys, HTLCOutputInCommitment, HTLC_OUTPUT_IN_COMMITMENT_SIZE};
use ln::chan_utils;
use ln::msgs::DecodeError;
use chain::chaininterface::{FeeEstimator, ConfirmationTarget, MIN_RELAY_FEE_SAT_PER_1000_WEIGHT};
use chain::keysinterface::Sign;
2021-04-18 19:18:30 -04:00
use chain::onchaintx::OnchainTxHandler;
use util::byte_utils;
use util::logger::Logger;
use util::ser::{Readable, Writer, Writeable};
use std::cmp;
use std::mem;
use std::ops::Deref;
const MAX_ALLOC_SIZE: usize = 64*1024;
// number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
pub(crate) const WEIGHT_REVOKED_OFFERED_HTLC: u64 = 1 + 1 + 73 + 1 + 33 + 1 + 133;
// number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
pub(crate) const WEIGHT_REVOKED_RECEIVED_HTLC: u64 = 1 + 1 + 73 + 1 + 33 + 1 + 139;
// number_of_witness_elements + sig_length + counterpartyhtlc_sig + preimage_length + preimage + witness_script_length + witness_script
pub(crate) const WEIGHT_OFFERED_HTLC: u64 = 1 + 1 + 73 + 1 + 32 + 1 + 133;
// number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
pub(crate) const WEIGHT_RECEIVED_HTLC: u64 = 1 + 1 + 73 + 1 + 1 + 1 + 139;
// number_of_witness_elements + sig_length + revocation_sig + true_length + op_true + witness_script_length + witness_script
pub(crate) const WEIGHT_REVOKED_OUTPUT: u64 = 1 + 1 + 73 + 1 + 1 + 1 + 77;
/// A struct to describe a revoked output and corresponding information to generate a solving
/// witness spending a commitment `to_local` output or a second-stage HTLC transaction output.
///
/// CSV and pubkeys are used as part of a witnessScript redeeming a balance output, amount is used
/// as part of the signature hash and revocation secret to generate a satisfying witness.
#[derive(Clone, PartialEq)]
pub(crate) struct RevokedOutput {
per_commitment_point: PublicKey,
counterparty_delayed_payment_base_key: PublicKey,
counterparty_htlc_base_key: PublicKey,
per_commitment_key: SecretKey,
weight: u64,
amount: u64,
on_counterparty_tx_csv: u16,
}
impl RevokedOutput {
pub(crate) fn build(per_commitment_point: PublicKey, counterparty_delayed_payment_base_key: PublicKey, counterparty_htlc_base_key: PublicKey, per_commitment_key: SecretKey, amount: u64, on_counterparty_tx_csv: u16) -> Self {
RevokedOutput {
per_commitment_point,
counterparty_delayed_payment_base_key,
counterparty_htlc_base_key,
per_commitment_key,
weight: WEIGHT_REVOKED_OUTPUT,
amount,
on_counterparty_tx_csv
}
}
}
impl_writeable!(RevokedOutput, 33*3 + 32 + 8 + 8 + 2, {
per_commitment_point,
counterparty_delayed_payment_base_key,
counterparty_htlc_base_key,
per_commitment_key,
weight,
amount,
on_counterparty_tx_csv
});
/// A struct to describe a revoked offered output and corresponding information to generate a
/// solving witness.
///
/// HTLCOuputInCommitment (hash timelock, direction) and pubkeys are used to generate a suitable
/// witnessScript.
///
/// CSV is used as part of a witnessScript redeeming a balance output, amount is used as part
/// of the signature hash and revocation secret to generate a satisfying witness.
#[derive(Clone, PartialEq)]
pub(crate) struct RevokedHTLCOutput {
per_commitment_point: PublicKey,
counterparty_delayed_payment_base_key: PublicKey,
counterparty_htlc_base_key: PublicKey,
per_commitment_key: SecretKey,
weight: u64,
amount: u64,
htlc: HTLCOutputInCommitment,
}
impl RevokedHTLCOutput {
pub(crate) fn build(per_commitment_point: PublicKey, counterparty_delayed_payment_base_key: PublicKey, counterparty_htlc_base_key: PublicKey, per_commitment_key: SecretKey, amount: u64, htlc: HTLCOutputInCommitment) -> Self {
let weight = if htlc.offered { WEIGHT_REVOKED_OFFERED_HTLC } else { WEIGHT_REVOKED_RECEIVED_HTLC };
RevokedHTLCOutput {
per_commitment_point,
counterparty_delayed_payment_base_key,
counterparty_htlc_base_key,
per_commitment_key,
weight,
amount,
htlc
}
}
}
impl_writeable!(RevokedHTLCOutput, 33*3 + 32 + 8 + 8 + HTLC_OUTPUT_IN_COMMITMENT_SIZE, {
per_commitment_point,
counterparty_delayed_payment_base_key,
counterparty_htlc_base_key,
per_commitment_key,
weight,
amount,
htlc
});
/// A struct to describe a HTLC output on a counterparty commitment transaction.
///
/// HTLCOutputInCommitment (hash, timelock, directon) and pubkeys are used to generate a suitable
/// witnessScript.
///
/// The preimage is used as part of the witness.
#[derive(Clone, PartialEq)]
pub(crate) struct CounterpartyOfferedHTLCOutput {
per_commitment_point: PublicKey,
counterparty_delayed_payment_base_key: PublicKey,
counterparty_htlc_base_key: PublicKey,
preimage: PaymentPreimage,
htlc: HTLCOutputInCommitment
}
impl CounterpartyOfferedHTLCOutput {
pub(crate) fn build(per_commitment_point: PublicKey, counterparty_delayed_payment_base_key: PublicKey, counterparty_htlc_base_key: PublicKey, preimage: PaymentPreimage, htlc: HTLCOutputInCommitment) -> Self {
CounterpartyOfferedHTLCOutput {
per_commitment_point,
counterparty_delayed_payment_base_key,
counterparty_htlc_base_key,
preimage,
htlc
}
}
}
impl_writeable!(CounterpartyOfferedHTLCOutput, 33*3 + 32 + HTLC_OUTPUT_IN_COMMITMENT_SIZE, {
per_commitment_point,
counterparty_delayed_payment_base_key,
counterparty_htlc_base_key,
preimage,
htlc
});
/// A struct to describe a HTLC output on a counterparty commitment transaction.
///
/// HTLCOutputInCommitment (hash, timelock, directon) and pubkeys are used to generate a suitable
/// witnessScript.
#[derive(Clone, PartialEq)]
pub(crate) struct CounterpartyReceivedHTLCOutput {
per_commitment_point: PublicKey,
counterparty_delayed_payment_base_key: PublicKey,
counterparty_htlc_base_key: PublicKey,
htlc: HTLCOutputInCommitment
}
impl CounterpartyReceivedHTLCOutput {
pub(crate) fn build(per_commitment_point: PublicKey, counterparty_delayed_payment_base_key: PublicKey, counterparty_htlc_base_key: PublicKey, htlc: HTLCOutputInCommitment) -> Self {
CounterpartyReceivedHTLCOutput {
per_commitment_point,
counterparty_delayed_payment_base_key,
counterparty_htlc_base_key,
htlc
}
}
}
impl_writeable!(CounterpartyReceivedHTLCOutput, 33*3 + HTLC_OUTPUT_IN_COMMITMENT_SIZE, {
per_commitment_point,
counterparty_delayed_payment_base_key,
counterparty_htlc_base_key,
htlc
});
/// A struct to describe a HTLC output on holder commitment transaction.
///
/// Either offered or received, the amount is always used as part of the bip143 sighash.
/// Preimage is only included as part of the witness in former case.
#[derive(Clone, PartialEq)]
pub(crate) struct HolderHTLCOutput {
preimage: Option<PaymentPreimage>,
amount: u64,
}
impl HolderHTLCOutput {
pub(crate) fn build(preimage: Option<PaymentPreimage>, amount: u64) -> Self {
HolderHTLCOutput {
preimage,
amount
}
}
}
impl_writeable!(HolderHTLCOutput, 0, {
preimage,
amount
});
/// A struct to describe the channel output on the funding transaction.
///
/// witnessScript is used as part of the witness redeeming the funding utxo.
#[derive(Clone, PartialEq)]
pub(crate) struct HolderFundingOutput {
funding_redeemscript: Script,
}
impl HolderFundingOutput {
pub(crate) fn build(funding_redeemscript: Script) -> Self {
HolderFundingOutput {
funding_redeemscript,
}
}
}
impl_writeable!(HolderFundingOutput, 0, {
funding_redeemscript
});
/// A wrapper encapsulating all in-protocol differing outputs types.
///
/// The generic API offers access to an outputs common attributes or allow transformation such as
/// finalizing an input claiming the output.
#[derive(Clone, PartialEq)]
pub(crate) enum PackageSolvingData {
RevokedOutput(RevokedOutput),
RevokedHTLCOutput(RevokedHTLCOutput),
CounterpartyOfferedHTLCOutput(CounterpartyOfferedHTLCOutput),
CounterpartyReceivedHTLCOutput(CounterpartyReceivedHTLCOutput),
HolderHTLCOutput(HolderHTLCOutput),
HolderFundingOutput(HolderFundingOutput),
}
impl PackageSolvingData {
fn amount(&self) -> u64 {
let amt = match self {
PackageSolvingData::RevokedOutput(ref outp) => { outp.amount },
PackageSolvingData::RevokedHTLCOutput(ref outp) => { outp.amount },
PackageSolvingData::CounterpartyOfferedHTLCOutput(ref outp) => { outp.htlc.amount_msat / 1000 },
PackageSolvingData::CounterpartyReceivedHTLCOutput(ref outp) => { outp.htlc.amount_msat / 1000 },
// Note: Currently, amounts of holder outputs spending witnesses aren't used
// as we can't malleate spending package to increase their feerate. This
// should change with the remaining anchor output patchset.
PackageSolvingData::HolderHTLCOutput(..) => { 0 },
PackageSolvingData::HolderFundingOutput(..) => { 0 },
};
amt
}
fn weight(&self) -> usize {
let weight = match self {
PackageSolvingData::RevokedOutput(ref outp) => { outp.weight as usize },
PackageSolvingData::RevokedHTLCOutput(ref outp) => { outp.weight as usize },
PackageSolvingData::CounterpartyOfferedHTLCOutput(..) => { WEIGHT_OFFERED_HTLC as usize },
PackageSolvingData::CounterpartyReceivedHTLCOutput(..) => { WEIGHT_RECEIVED_HTLC as usize },
// Note: Currently, weights of holder outputs spending witnesses aren't used
// as we can't malleate spending package to increase their feerate. This
// should change with the remaining anchor output patchset.
PackageSolvingData::HolderHTLCOutput(..) => { debug_assert!(false); 0 },
PackageSolvingData::HolderFundingOutput(..) => { debug_assert!(false); 0 },
};
weight
}
fn is_compatible(&self, input: &PackageSolvingData) -> bool {
match self {
PackageSolvingData::RevokedOutput(..) => {
match input {
PackageSolvingData::RevokedHTLCOutput(..) => { true },
PackageSolvingData::RevokedOutput(..) => { true },
_ => { false }
}
},
PackageSolvingData::RevokedHTLCOutput(..) => {
match input {
PackageSolvingData::RevokedOutput(..) => { true },
PackageSolvingData::RevokedHTLCOutput(..) => { true },
_ => { false }
}
},
_ => { mem::discriminant(self) == mem::discriminant(&input) }
}
}
fn finalize_input<Signer: Sign>(&self, bumped_tx: &mut Transaction, i: usize, onchain_handler: &mut OnchainTxHandler<Signer>) -> bool {
match self {
PackageSolvingData::RevokedOutput(ref outp) => {
if let Ok(chan_keys) = TxCreationKeys::derive_new(&onchain_handler.secp_ctx, &outp.per_commitment_point, &outp.counterparty_delayed_payment_base_key, &outp.counterparty_htlc_base_key, &onchain_handler.signer.pubkeys().revocation_basepoint, &onchain_handler.signer.pubkeys().htlc_basepoint) {
let witness_script = chan_utils::get_revokeable_redeemscript(&chan_keys.revocation_key, outp.on_counterparty_tx_csv, &chan_keys.broadcaster_delayed_payment_key);
//TODO: should we panic on signer failure ?
if let Ok(sig) = onchain_handler.signer.sign_justice_revoked_output(&bumped_tx, i, outp.amount, &outp.per_commitment_key, &onchain_handler.secp_ctx) {
bumped_tx.input[i].witness.push(sig.serialize_der().to_vec());
bumped_tx.input[i].witness[0].push(SigHashType::All as u8);
bumped_tx.input[i].witness.push(vec!(1));
bumped_tx.input[i].witness.push(witness_script.clone().into_bytes());
} else { return false; }
}
},
PackageSolvingData::RevokedHTLCOutput(ref outp) => {
if let Ok(chan_keys) = TxCreationKeys::derive_new(&onchain_handler.secp_ctx, &outp.per_commitment_point, &outp.counterparty_delayed_payment_base_key, &outp.counterparty_htlc_base_key, &onchain_handler.signer.pubkeys().revocation_basepoint, &onchain_handler.signer.pubkeys().htlc_basepoint) {
let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&outp.htlc, &chan_keys.broadcaster_htlc_key, &chan_keys.countersignatory_htlc_key, &chan_keys.revocation_key);
//TODO: should we panic on signer failure ?
if let Ok(sig) = onchain_handler.signer.sign_justice_revoked_htlc(&bumped_tx, i, outp.amount, &outp.per_commitment_key, &outp.htlc, &onchain_handler.secp_ctx) {
bumped_tx.input[i].witness.push(sig.serialize_der().to_vec());
bumped_tx.input[i].witness[0].push(SigHashType::All as u8);
bumped_tx.input[i].witness.push(chan_keys.revocation_key.clone().serialize().to_vec());
bumped_tx.input[i].witness.push(witness_script.clone().into_bytes());
} else { return false; }
}
},
PackageSolvingData::CounterpartyOfferedHTLCOutput(ref outp) => {
if let Ok(chan_keys) = TxCreationKeys::derive_new(&onchain_handler.secp_ctx, &outp.per_commitment_point, &outp.counterparty_delayed_payment_base_key, &outp.counterparty_htlc_base_key, &onchain_handler.signer.pubkeys().revocation_basepoint, &onchain_handler.signer.pubkeys().htlc_basepoint) {
let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&outp.htlc, &chan_keys.broadcaster_htlc_key, &chan_keys.countersignatory_htlc_key, &chan_keys.revocation_key);
if let Ok(sig) = onchain_handler.signer.sign_counterparty_htlc_transaction(&bumped_tx, i, &outp.htlc.amount_msat / 1000, &outp.per_commitment_point, &outp.htlc, &onchain_handler.secp_ctx) {
bumped_tx.input[i].witness.push(sig.serialize_der().to_vec());
bumped_tx.input[i].witness[0].push(SigHashType::All as u8);
bumped_tx.input[i].witness.push(outp.preimage.0.to_vec());
bumped_tx.input[i].witness.push(witness_script.clone().into_bytes());
}
}
},
PackageSolvingData::CounterpartyReceivedHTLCOutput(ref outp) => {
if let Ok(chan_keys) = TxCreationKeys::derive_new(&onchain_handler.secp_ctx, &outp.per_commitment_point, &outp.counterparty_delayed_payment_base_key, &outp.counterparty_htlc_base_key, &onchain_handler.signer.pubkeys().revocation_basepoint, &onchain_handler.signer.pubkeys().htlc_basepoint) {
let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&outp.htlc, &chan_keys.broadcaster_htlc_key, &chan_keys.countersignatory_htlc_key, &chan_keys.revocation_key);
bumped_tx.lock_time = outp.htlc.cltv_expiry; // Right now we don't aggregate time-locked transaction, if we do we should set lock_time before to avoid breaking hash computation
if let Ok(sig) = onchain_handler.signer.sign_counterparty_htlc_transaction(&bumped_tx, i, &outp.htlc.amount_msat / 1000, &outp.per_commitment_point, &outp.htlc, &onchain_handler.secp_ctx) {
bumped_tx.input[i].witness.push(sig.serialize_der().to_vec());
bumped_tx.input[i].witness[0].push(SigHashType::All as u8);
// Due to BIP146 (MINIMALIF) this must be a zero-length element to relay.
bumped_tx.input[i].witness.push(vec![]);
bumped_tx.input[i].witness.push(witness_script.clone().into_bytes());
}
}
},
_ => { panic!("API Error!"); }
}
true
}
fn get_finalized_tx<Signer: Sign>(&self, outpoint: &BitcoinOutPoint, onchain_handler: &mut OnchainTxHandler<Signer>) -> Option<Transaction> {
match self {
PackageSolvingData::HolderHTLCOutput(ref outp) => { return onchain_handler.get_fully_signed_htlc_tx(outpoint, &outp.preimage); }
PackageSolvingData::HolderFundingOutput(ref outp) => { return Some(onchain_handler.get_fully_signed_holder_tx(&outp.funding_redeemscript)); }
_ => { panic!("API Error!"); }
}
}
}
impl Writeable for PackageSolvingData {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
PackageSolvingData::RevokedOutput(ref revoked_outp) => {
0u8.write(writer)?;
revoked_outp.write(writer)?;
},
PackageSolvingData::RevokedHTLCOutput(ref revoked_outp) => {
1u8.write(writer)?;
revoked_outp.write(writer)?;
},
PackageSolvingData::CounterpartyOfferedHTLCOutput(ref counterparty_outp) => {
2u8.write(writer)?;
counterparty_outp.write(writer)?;
},
PackageSolvingData::CounterpartyReceivedHTLCOutput(ref counterparty_outp) => {
3u8.write(writer)?;
counterparty_outp.write(writer)?;
},
PackageSolvingData::HolderHTLCOutput(ref holder_outp) => {
4u8.write(writer)?;
holder_outp.write(writer)?;
},
PackageSolvingData::HolderFundingOutput(ref funding_outp) => {
5u8.write(writer)?;
funding_outp.write(writer)?;
}
}
Ok(())
}
}
impl Readable for PackageSolvingData {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
let byte = <u8 as Readable>::read(reader)?;
let solving_data = match byte {
0 => {
PackageSolvingData::RevokedOutput(Readable::read(reader)?)
},
1 => {
PackageSolvingData::RevokedHTLCOutput(Readable::read(reader)?)
},
2 => {
PackageSolvingData::CounterpartyOfferedHTLCOutput(Readable::read(reader)?)
},
3 => {
PackageSolvingData::CounterpartyReceivedHTLCOutput(Readable::read(reader)?)
},
4 => {
PackageSolvingData::HolderHTLCOutput(Readable::read(reader)?)
},
5 => {
PackageSolvingData::HolderFundingOutput(Readable::read(reader)?)
}
_ => return Err(DecodeError::UnknownVersion)
};
Ok(solving_data)
}
}
/// A malleable package might be aggregated with other packages to save on fees.
/// A untractable package has been counter-signed and aggregable will break cached counterparty
/// signatures.
#[derive(Clone, PartialEq)]
pub(crate) enum PackageMalleability {
Malleable,
Untractable,
}
/// A structure to describe a package content that is generated by ChannelMonitor and
/// used by OnchainTxHandler to generate and broadcast transactions settling onchain claims.
///
/// A package is defined as one or more transactions claiming onchain outputs in reaction
/// to confirmation of a channel transaction. Those packages might be aggregated to save on
/// fees, if satisfaction of outputs's witnessScript let's us do so.
///
/// As packages are time-sensitive, we fee-bump and rebroadcast them at scheduled intervals.
/// Failing to confirm a package translate as a loss of funds for the user.
#[derive(Clone, PartialEq)]
pub struct PackageTemplate {
// List of onchain outputs and solving data to generate satisfying witnesses.
inputs: Vec<(BitcoinOutPoint, PackageSolvingData)>,
// Packages are deemed as malleable if we have local knwoledge of at least one set of
// private keys yielding a satisfying witnesses. Malleability implies that we can aggregate
// packages among them to save on fees or rely on RBF to bump their feerates.
// Untractable packages have been counter-signed and thus imply that we can't aggregate
// them without breaking signatures. Fee-bumping strategy will also rely on CPFP.
malleability: PackageMalleability,
// Block height after which the earlier-output belonging to this package is mature for a
// competing claim by the counterparty. As our chain tip becomes nearer from the timelock,
// the fee-bumping frequency will increase. See `OnchainTxHandler::get_height_timer`.
soonest_conf_deadline: u32,
// Determines if this package can be aggregated.
// Timelocked outputs belonging to the same transaction might have differing
// satisfying heights. Picking up the later height among the output set would be a valid
// aggregable strategy but it comes with at least 2 trade-offs :
// * earlier-output fund are going to take longer to come back
// * CLTV delta backing up a corresponding HTLC on an upstream channel could be swallowed
// by the requirement of the later-output part of the set
// For now, we mark such timelocked outputs as non-aggregable, though we might introduce
// smarter aggregable strategy in the future.
aggregable: bool,
// Cache of package feerate committed at previous (re)broadcast. If bumping resources
// (either claimed output value or external utxo), it will keep increasing until holder
// or counterparty successful claim.
feerate_previous: u64,
// Cache of next height at which fee-bumping and rebroadcast will be attempted. In
// the future, we might abstract it to an observed mempool fluctuation.
height_timer: Option<u32>,
// Confirmation height of the claimed outputs set transaction. In case of reorg reaching
// it, we wipe out and forget the package.
height_original: u32,
}
impl PackageTemplate {
pub(crate) fn is_malleable(&self) -> bool {
self.malleability == PackageMalleability::Malleable
}
pub(crate) fn timelock(&self) -> u32 {
self.soonest_conf_deadline
}
pub(crate) fn aggregable(&self) -> bool {
self.aggregable
}
pub(crate) fn feerate(&self) -> u64 {
self.feerate_previous
}
pub(crate) fn set_feerate(&mut self, new_feerate: u64) {
self.feerate_previous = new_feerate;
}
pub(crate) fn timer(&self) -> Option<u32> {
if let Some(ref timer) = self.height_timer {
return Some(*timer);
}
None
}
pub(crate) fn set_timer(&mut self, new_timer: Option<u32>) {
self.height_timer = new_timer;
}
pub(crate) fn outpoints(&self) -> Vec<&BitcoinOutPoint> {
self.inputs.iter().map(|(o, _)| o).collect()
}
pub(crate) fn split_package(&mut self, split_outp: &BitcoinOutPoint) -> Option<PackageTemplate> {
match self.malleability {
PackageMalleability::Malleable => {
let mut split_package = None;
let timelock = self.soonest_conf_deadline;
let aggregable = self.aggregable;
let feerate_previous = self.feerate_previous;
let height_timer = self.height_timer;
let height_original = self.height_original;
self.inputs.retain(|outp| {
if *split_outp == outp.0 {
split_package = Some(PackageTemplate {
inputs: vec![(outp.0, outp.1.clone())],
malleability: PackageMalleability::Malleable,
soonest_conf_deadline: timelock,
aggregable,
feerate_previous,
height_timer,
height_original,
});
return false;
}
return true;
});
return split_package;
},
_ => {
// Note, we may try to split on remote transaction for
// which we don't have a competing one (HTLC-Success before
// timelock expiration). This explain we don't panic!
// We should refactor OnchainTxHandler::block_connected to
// only test equality on competing claims.
return None;
}
}
}
pub(crate) fn merge_package(&mut self, mut merge_from: PackageTemplate) {
assert_eq!(self.height_original, merge_from.height_original);
if self.malleability == PackageMalleability::Untractable || merge_from.malleability == PackageMalleability::Untractable {
panic!("Merging template on untractable packages");
}
if !self.aggregable || !merge_from.aggregable {
panic!("Merging non aggregatable packages");
}
if let Some((_, lead_input)) = self.inputs.first() {
for (_, v) in merge_from.inputs.iter() {
if !lead_input.is_compatible(v) { panic!("Merging outputs from differing types !"); }
}
} else { panic!("Merging template on an empty package"); }
for (k, v) in merge_from.inputs.drain(..) {
self.inputs.push((k, v));
}
//TODO: verify coverage and sanity?
if self.soonest_conf_deadline > merge_from.soonest_conf_deadline {
self.soonest_conf_deadline = merge_from.soonest_conf_deadline;
}
if self.feerate_previous > merge_from.feerate_previous {
self.feerate_previous = merge_from.feerate_previous;
}
self.height_timer = cmp::min(self.height_timer, merge_from.height_timer);
}
pub(crate) fn package_amount(&self) -> u64 {
let mut amounts = 0;
for (_, outp) in self.inputs.iter() {
amounts += outp.amount();
}
amounts
}
pub(crate) fn package_weight(&self, destination_script: &Script) -> usize {
let mut inputs_weight = 0;
let mut witnesses_weight = 2; // count segwit flags
for (_, outp) in self.inputs.iter() {
// previous_out_point: 36 bytes ; var_int: 1 byte ; sequence: 4 bytes
inputs_weight += 41 * WITNESS_SCALE_FACTOR;
witnesses_weight += outp.weight();
}
// version: 4 bytes ; count_tx_in: 1 byte ; count_tx_out: 1 byte ; lock_time: 4 bytes
let transaction_weight = 10 * WITNESS_SCALE_FACTOR;
// value: 8 bytes ; var_int: 1 byte ; pk_script: `destination_script.len()`
let output_weight = (8 + 1 + destination_script.len()) * WITNESS_SCALE_FACTOR;
inputs_weight + witnesses_weight + transaction_weight + output_weight
}
pub(crate) fn finalize_package<L: Deref, Signer: Sign>(&self, onchain_handler: &mut OnchainTxHandler<Signer>, value: u64, destination_script: Script, logger: &L) -> Option<Transaction>
where L::Target: Logger,
{
match self.malleability {
PackageMalleability::Malleable => {
let mut bumped_tx = Transaction {
version: 2,
lock_time: 0,
input: vec![],
output: vec![TxOut {
script_pubkey: destination_script,
value,
}],
};
for (outpoint, _) in self.inputs.iter() {
bumped_tx.input.push(TxIn {
previous_output: *outpoint,
script_sig: Script::new(),
sequence: 0xfffffffd,
witness: Vec::new(),
});
}
for (i, (outpoint, out)) in self.inputs.iter().enumerate() {
log_trace!(logger, "Adding claiming input for outpoint {}:{}", outpoint.txid, outpoint.vout);
if !out.finalize_input(&mut bumped_tx, i, onchain_handler) { return None; }
}
log_trace!(logger, "Finalized transaction {} ready to broadcast", bumped_tx.txid());
return Some(bumped_tx);
},
PackageMalleability::Untractable => {
if let Some((outpoint, outp)) = self.inputs.first() {
if let Some(final_tx) = outp.get_finalized_tx(outpoint, onchain_handler) {
log_trace!(logger, "Adding claiming input for outpoint {}:{}", outpoint.txid, outpoint.vout);
log_trace!(logger, "Finalized transaction {} ready to broadcast", final_tx.txid());
return Some(final_tx);
}
return None;
} else { panic!("API Error: Package must not be inputs empty"); }
},
}
}
pub (crate) fn build_package(txid: Txid, vout: u32, input_solving_data: PackageSolvingData, soonest_conf_deadline: u32, aggregable: bool, height_original: u32) -> Self {
let malleability = match input_solving_data {
PackageSolvingData::RevokedOutput(..) => { PackageMalleability::Malleable },
PackageSolvingData::RevokedHTLCOutput(..) => { PackageMalleability::Malleable },
PackageSolvingData::CounterpartyOfferedHTLCOutput(..) => { PackageMalleability::Malleable },
PackageSolvingData::CounterpartyReceivedHTLCOutput(..) => { PackageMalleability::Malleable },
PackageSolvingData::HolderHTLCOutput(..) => { PackageMalleability::Untractable },
PackageSolvingData::HolderFundingOutput(..) => { PackageMalleability::Untractable },
};
let mut inputs = Vec::with_capacity(1);
inputs.push((BitcoinOutPoint { txid, vout }, input_solving_data));
PackageTemplate {
inputs,
malleability,
soonest_conf_deadline,
aggregable,
feerate_previous: 0,
height_timer: None,
height_original,
}
}
}
impl Writeable for PackageTemplate {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
writer.write_all(&byte_utils::be64_to_array(self.inputs.len() as u64))?;
for (ref outpoint, ref rev_outp) in self.inputs.iter() {
outpoint.write(writer)?;
rev_outp.write(writer)?;
}
self.soonest_conf_deadline.write(writer)?;
self.feerate_previous.write(writer)?;
self.height_timer.write(writer)?;
self.height_original.write(writer)?;
Ok(())
}
}
impl Readable for PackageTemplate {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
let inputs_count = <u64 as Readable>::read(reader)?;
let mut inputs: Vec<(BitcoinOutPoint, PackageSolvingData)> = Vec::with_capacity(cmp::min(inputs_count as usize, MAX_ALLOC_SIZE / 128));
for _ in 0..inputs_count {
let outpoint = Readable::read(reader)?;
let rev_outp = Readable::read(reader)?;
inputs.push((outpoint, rev_outp));
}
let (malleability, aggregable) = if let Some((_, lead_input)) = inputs.first() {
match lead_input {
PackageSolvingData::RevokedOutput(..) => { (PackageMalleability::Malleable, true) },
PackageSolvingData::RevokedHTLCOutput(..) => { (PackageMalleability::Malleable, true) },
PackageSolvingData::CounterpartyOfferedHTLCOutput(..) => { (PackageMalleability::Malleable, true) },
PackageSolvingData::CounterpartyReceivedHTLCOutput(..) => { (PackageMalleability::Malleable, false) },
PackageSolvingData::HolderHTLCOutput(..) => { (PackageMalleability::Untractable, false) },
PackageSolvingData::HolderFundingOutput(..) => { (PackageMalleability::Untractable, false) },
}
} else { return Err(DecodeError::InvalidValue); };
let soonest_conf_deadline = Readable::read(reader)?;
let feerate_previous = Readable::read(reader)?;
let height_timer = Readable::read(reader)?;
let height_original = Readable::read(reader)?;
Ok(PackageTemplate {
inputs,
malleability,
soonest_conf_deadline,
aggregable,
feerate_previous,
height_timer,
height_original,
})
}
}
/// Attempt to propose a bumping fee for a transaction from its spent output's values and predicted
/// weight. We start with the highest priority feerate returned by the node's fee estimator then
/// fall-back to lower priorities until we have enough value available to suck from.
///
/// If the proposed fee is less than the available spent output's values, we return the proposed
/// fee and the corresponding updated feerate. If the proposed fee is equal or more than the
/// available spent output's values, we return nothing
fn compute_fee_from_spent_amounts<F: Deref, L: Deref>(input_amounts: u64, predicted_weight: usize, fee_estimator: &F, logger: &L) -> Option<(u64, u64)>
where F::Target: FeeEstimator,
L::Target: Logger,
{
let mut updated_feerate = fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::HighPriority) as u64;
let mut fee = updated_feerate * (predicted_weight as u64) / 1000;
if input_amounts <= fee {
updated_feerate = fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal) as u64;
fee = updated_feerate * (predicted_weight as u64) / 1000;
if input_amounts <= fee {
updated_feerate = fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Background) as u64;
fee = updated_feerate * (predicted_weight as u64) / 1000;
if input_amounts <= fee {
log_error!(logger, "Failed to generate an on-chain punishment tx as even low priority fee ({} sat) was more than the entire claim balance ({} sat)",
fee, input_amounts);
None
} else {
log_warn!(logger, "Used low priority fee for on-chain punishment tx as high priority fee was more than the entire claim balance ({} sat)",
input_amounts);
Some((fee, updated_feerate))
}
} else {
log_warn!(logger, "Used medium priority fee for on-chain punishment tx as high priority fee was more than the entire claim balance ({} sat)",
input_amounts);
Some((fee, updated_feerate))
}
} else {
Some((fee, updated_feerate))
}
}
/// Attempt to propose a bumping fee for a transaction from its spent output's values and predicted
/// weight. If feerates proposed by the fee-estimator have been increasing since last fee-bumping
/// attempt, use them. Otherwise, blindly bump the feerate by 25% of the previous feerate. We also
/// verify that those bumping heuristics respect BIP125 rules 3) and 4) and if required adjust
/// the new fee to meet the RBF policy requirement.
fn feerate_bump<F: Deref, L: Deref>(predicted_weight: usize, input_amounts: u64, previous_feerate: u64, fee_estimator: &F, logger: &L) -> Option<(u64, u64)>
where F::Target: FeeEstimator,
L::Target: Logger,
{
// If old feerate inferior to actual one given back by Fee Estimator, use it to compute new fee...
let new_fee = if let Some((new_fee, _)) = compute_fee_from_spent_amounts(input_amounts, predicted_weight, fee_estimator, logger) {
let updated_feerate = new_fee / (predicted_weight as u64 * 1000);
if updated_feerate > previous_feerate {
new_fee
} else {
// ...else just increase the previous feerate by 25% (because that's a nice number)
let new_fee = previous_feerate * (predicted_weight as u64) / 750;
if input_amounts <= new_fee {
log_trace!(logger, "Can't 25% bump new claiming tx, amount {} is too small", input_amounts);
return None;
}
new_fee
}
} else {
log_trace!(logger, "Can't new-estimation bump new claiming tx, amount {} is too small", input_amounts);
return None;
};
let previous_fee = previous_feerate * (predicted_weight as u64) / 1000;
let min_relay_fee = MIN_RELAY_FEE_SAT_PER_1000_WEIGHT * (predicted_weight as u64) / 1000;
// BIP 125 Opt-in Full Replace-by-Fee Signaling
// * 3. The replacement transaction pays an absolute fee of at least the sum paid by the original transactions.
// * 4. The replacement transaction must also pay for its own bandwidth at or above the rate set by the node's minimum relay fee setting.
let new_fee = if new_fee < previous_fee + min_relay_fee {
new_fee + previous_fee + min_relay_fee - new_fee
} else {
new_fee
};
Some((new_fee, new_fee * 1000 / (predicted_weight as u64)))
}
/// Deduce a new proposed fee from the claiming transaction output value.
/// If the new proposed fee is superior to the consumed outpoint's value, burn everything in miner's
/// fee to deter counterparties attacker.
pub(crate) fn compute_output_value<F: Deref, L: Deref>(predicted_weight: usize, input_amounts: u64, previous_feerate: u64, fee_estimator: &F, logger: &L) -> Option<(u64, u64)>
where F::Target: FeeEstimator,
L::Target: Logger,
{
// If old feerate is 0, first iteration of this claim, use normal fee calculation
if previous_feerate != 0 {
if let Some((new_fee, feerate)) = feerate_bump(predicted_weight, input_amounts, previous_feerate, fee_estimator, logger) {
// If new computed fee is superior at the whole claimable amount burn all in fees
if new_fee > input_amounts {
return Some((0, feerate));
} else {
return Some((input_amounts - new_fee, feerate));
}
}
} else {
if let Some((new_fee, feerate)) = compute_fee_from_spent_amounts(input_amounts, predicted_weight, fee_estimator, logger) {
return Some((input_amounts - new_fee, feerate));
}
}
None
}