rust-lightning/lightning/src/routing/router.rs

4005 lines
168 KiB
Rust
Raw Normal View History

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! The top-level routing/network map tracking logic lives here.
//!
2020-05-06 19:04:44 -04:00
//! You probably want to create a NetGraphMsgHandler and use that as your RoutingMessageHandler and then
//! interrogate it to get routes for your own payments.
2020-04-27 16:51:59 +02:00
use bitcoin::secp256k1::key::PublicKey;
2017-12-25 01:05:27 -05:00
use ln::channelmanager::ChannelDetails;
use ln::features::{ChannelFeatures, InvoiceFeatures, NodeFeatures};
2020-06-16 18:58:06 +03:00
use ln::msgs::{DecodeError, ErrorAction, LightningError, MAX_VALUE_MSAT};
use routing::network_graph::{NetworkGraph, RoutingFees};
use util::ser::{Writeable, Readable};
use util::logger::Logger;
2017-12-25 01:05:27 -05:00
use std::cmp;
2020-08-10 13:50:29 +03:00
use std::collections::{HashMap, BinaryHeap};
use std::ops::Deref;
2017-12-25 01:05:27 -05:00
/// A hop in a route
#[derive(Clone, PartialEq)]
2017-12-25 01:05:27 -05:00
pub struct RouteHop {
/// The node_id of the node at this hop.
2017-12-25 01:05:27 -05:00
pub pubkey: PublicKey,
/// The node_announcement features of the node at this hop. For the last hop, these may be
/// amended to match the features present in the invoice this node generated.
pub node_features: NodeFeatures,
2017-12-25 01:05:27 -05:00
/// The channel that should be used from the previous hop to reach this node.
pub short_channel_id: u64,
/// The channel_announcement features of the channel that should be used from the previous hop
/// to reach this node.
pub channel_features: ChannelFeatures,
2020-08-10 13:50:29 +03:00
/// The fee taken on this hop (for paying for the use of the *next* channel in the path).
/// For the last hop, this should be the full value of the payment (might be more than
/// requested if we had to match htlc_minimum_msat).
2017-12-25 01:05:27 -05:00
pub fee_msat: u64,
/// The CLTV delta added for this hop. For the last hop, this should be the full CLTV value
/// expected at the destination, in excess of the current block height.
2017-12-25 01:05:27 -05:00
pub cltv_expiry_delta: u32,
}
/// (C-not exported)
impl Writeable for Vec<RouteHop> {
2018-10-18 21:34:41 -04:00
fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
(self.len() as u8).write(writer)?;
for hop in self.iter() {
2018-10-18 21:34:41 -04:00
hop.pubkey.write(writer)?;
hop.node_features.write(writer)?;
2018-10-18 21:34:41 -04:00
hop.short_channel_id.write(writer)?;
hop.channel_features.write(writer)?;
2018-10-18 21:34:41 -04:00
hop.fee_msat.write(writer)?;
hop.cltv_expiry_delta.write(writer)?;
}
Ok(())
}
}
/// (C-not exported)
impl Readable for Vec<RouteHop> {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Vec<RouteHop>, DecodeError> {
2018-10-18 21:34:41 -04:00
let hops_count: u8 = Readable::read(reader)?;
let mut hops = Vec::with_capacity(hops_count as usize);
for _ in 0..hops_count {
hops.push(RouteHop {
pubkey: Readable::read(reader)?,
node_features: Readable::read(reader)?,
2018-10-18 21:34:41 -04:00
short_channel_id: Readable::read(reader)?,
channel_features: Readable::read(reader)?,
2018-10-18 21:34:41 -04:00
fee_msat: Readable::read(reader)?,
cltv_expiry_delta: Readable::read(reader)?,
});
}
Ok(hops)
}
}
/// A route directs a payment from the sender (us) to the recipient. If the recipient supports MPP,
/// it can take multiple paths. Each path is composed of one or more hops through the network.
#[derive(Clone, PartialEq)]
pub struct Route {
/// The list of routes taken for a single (potentially-)multi-part payment. The pubkey of the
/// last RouteHop in each path must be the same.
/// Each entry represents a list of hops, NOT INCLUDING our own, where the last hop is the
/// destination. Thus, this must always be at least length one. While the maximum length of any
/// given path is variable, keeping the length of any path to less than 20 should currently
/// ensure it is viable.
pub paths: Vec<Vec<RouteHop>>,
}
impl Writeable for Route {
fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
(self.paths.len() as u64).write(writer)?;
for hops in self.paths.iter() {
hops.write(writer)?;
}
Ok(())
}
}
impl Readable for Route {
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Route, DecodeError> {
let path_count: u64 = Readable::read(reader)?;
let mut paths = Vec::with_capacity(cmp::min(path_count, 128) as usize);
for _ in 0..path_count {
paths.push(Readable::read(reader)?);
}
Ok(Route { paths })
2018-10-18 21:34:41 -04:00
}
}
2017-12-25 01:05:27 -05:00
/// A channel descriptor which provides a last-hop route to get_route
#[derive(Eq, PartialEq, Debug, Clone)]
pub struct RouteHintHop {
/// The node_id of the non-target end of the route
2017-12-25 01:05:27 -05:00
pub src_node_id: PublicKey,
/// The short_channel_id of this channel
2017-12-25 01:05:27 -05:00
pub short_channel_id: u64,
/// The fees which must be paid to use this channel
pub fees: RoutingFees,
/// The difference in CLTV values between this node and the next node.
2017-12-25 01:05:27 -05:00
pub cltv_expiry_delta: u16,
/// The minimum value, in msat, which must be relayed to the next hop.
pub htlc_minimum_msat: Option<u64>,
/// The maximum value in msat available for routing with a single HTLC.
pub htlc_maximum_msat: Option<u64>,
2017-12-25 01:05:27 -05:00
}
#[derive(Eq, PartialEq)]
struct RouteGraphNode {
pubkey: PublicKey,
lowest_fee_to_peer_through_node: u64,
lowest_fee_to_node: u64,
2020-08-10 13:50:29 +03:00
// The maximum value a yet-to-be-constructed payment path might flow through this node.
// This value is upper-bounded by us by:
// - how much is needed for a path being constructed
// - how much value can channels following this node (up to the destination) can contribute,
// considering their capacity and fees
value_contribution_msat: u64,
/// The effective htlc_minimum_msat at this hop. If a later hop on the path had a higher HTLC
/// minimum, we use it, plus the fees required at each earlier hop to meet it.
path_htlc_minimum_msat: u64,
2017-12-25 01:05:27 -05:00
}
impl cmp::Ord for RouteGraphNode {
fn cmp(&self, other: &RouteGraphNode) -> cmp::Ordering {
let other_score = cmp::max(other.lowest_fee_to_peer_through_node, other.path_htlc_minimum_msat);
let self_score = cmp::max(self.lowest_fee_to_peer_through_node, self.path_htlc_minimum_msat);
other_score.cmp(&self_score).then_with(|| other.pubkey.serialize().cmp(&self.pubkey.serialize()))
2017-12-25 01:05:27 -05:00
}
}
impl cmp::PartialOrd for RouteGraphNode {
fn partial_cmp(&self, other: &RouteGraphNode) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
struct DummyDirectionalChannelInfo {
cltv_expiry_delta: u32,
htlc_minimum_msat: u64,
htlc_maximum_msat: Option<u64>,
fees: RoutingFees,
}
2020-08-10 13:50:29 +03:00
/// It's useful to keep track of the hops associated with the fees required to use them,
/// so that we can choose cheaper paths (as per Dijkstra's algorithm).
/// Fee values should be updated only in the context of the whole path, see update_value_and_recompute_fees.
/// These fee values are useful to choose hops as we traverse the graph "payee-to-payer".
#[derive(Clone)]
struct PathBuildingHop<'a> {
// The RouteHintHop fields which will eventually be used if this hop is used in a final Route.
// Note that node_features is calculated separately after our initial graph walk.
pubkey: PublicKey,
short_channel_id: u64,
channel_features: &'a ChannelFeatures,
fee_msat: u64,
cltv_expiry_delta: u32,
2020-08-10 13:50:29 +03:00
/// Minimal fees required to route to the source node of the current hop via any of its inbound channels.
src_lowest_inbound_fees: RoutingFees,
/// Fees of the channel used in this hop.
channel_fees: RoutingFees,
/// All the fees paid *after* this channel on the way to the destination
next_hops_fee_msat: u64,
/// Fee paid for the use of the current channel (see channel_fees).
/// The value will be actually deducted from the counterparty balance on the previous link.
hop_use_fee_msat: u64,
/// Used to compare channels when choosing the for routing.
/// Includes paying for the use of a hop and the following hops, as well as
/// an estimated cost of reaching this hop.
/// Might get stale when fees are recomputed. Primarily for internal use.
total_fee_msat: u64,
/// This is useful for update_value_and_recompute_fees to make sure
/// we don't fall below the minimum. Should not be updated manually and
/// generally should not be accessed.
htlc_minimum_msat: u64,
/// A mirror of the same field in RouteGraphNode. Note that this is only used during the graph
/// walk and may be invalid thereafter.
path_htlc_minimum_msat: u64,
/// If we've already processed a node as the best node, we shouldn't process it again. Normally
/// we'd just ignore it if we did as all channels would have a higher new fee, but because we
/// may decrease the amounts in use as we walk the graph, the actual calculated fee may
/// decrease as well. Thus, we have to explicitly track which nodes have been processed and
/// avoid processing them again.
was_processed: bool,
#[cfg(any(test, feature = "fuzztarget"))]
// In tests, we apply further sanity checks on cases where we skip nodes we already processed
// to ensure it is specifically in cases where the fee has gone down because of a decrease in
// value_contribution_msat, which requires tracking it here. See comments below where it is
// used for more info.
value_contribution_msat: u64,
2020-08-10 13:50:29 +03:00
}
// Instantiated with a list of hops with correct data in them collected during path finding,
// an instance of this struct should be further modified only via given methods.
#[derive(Clone)]
struct PaymentPath<'a> {
hops: Vec<(PathBuildingHop<'a>, NodeFeatures)>,
2020-08-10 13:50:29 +03:00
}
impl<'a> PaymentPath<'a> {
2020-08-10 13:50:29 +03:00
// TODO: Add a value_msat field to PaymentPath and use it instead of this function.
fn get_value_msat(&self) -> u64 {
self.hops.last().unwrap().0.fee_msat
2020-08-10 13:50:29 +03:00
}
fn get_total_fee_paid_msat(&self) -> u64 {
if self.hops.len() < 1 {
return 0;
}
let mut result = 0;
// Can't use next_hops_fee_msat because it gets outdated.
for (i, (hop, _)) in self.hops.iter().enumerate() {
2020-08-10 13:50:29 +03:00
if i != self.hops.len() - 1 {
result += hop.fee_msat;
2020-08-10 13:50:29 +03:00
}
}
return result;
}
// If the amount transferred by the path is updated, the fees should be adjusted. Any other way
// to change fees may result in an inconsistency.
//
// Sometimes we call this function right after constructing a path which is inconsistent in
// that it the value being transferred has decreased while we were doing path finding, leading
// to the fees being paid not lining up with the actual limits.
//
// Note that this function is not aware of the available_liquidity limit, and thus does not
// support increasing the value being transferred.
2020-08-10 13:50:29 +03:00
fn update_value_and_recompute_fees(&mut self, value_msat: u64) {
assert!(value_msat <= self.hops.last().unwrap().0.fee_msat);
2020-08-10 13:50:29 +03:00
let mut total_fee_paid_msat = 0 as u64;
for i in (0..self.hops.len()).rev() {
let last_hop = i == self.hops.len() - 1;
// For non-last-hop, this value will represent the fees paid on the current hop. It
// will consist of the fees for the use of the next hop, and extra fees to match
// htlc_minimum_msat of the current channel. Last hop is handled separately.
let mut cur_hop_fees_msat = 0;
if !last_hop {
cur_hop_fees_msat = self.hops.get(i + 1).unwrap().0.hop_use_fee_msat;
}
let mut cur_hop = &mut self.hops.get_mut(i).unwrap().0;
2020-08-10 13:50:29 +03:00
cur_hop.next_hops_fee_msat = total_fee_paid_msat;
// Overpay in fees if we can't save these funds due to htlc_minimum_msat.
// We try to account for htlc_minimum_msat in scoring (add_entry!), so that nodes don't
// set it too high just to maliciously take more fees by exploiting this
// match htlc_minimum_msat logic.
let mut cur_hop_transferred_amount_msat = total_fee_paid_msat + value_msat;
if let Some(extra_fees_msat) = cur_hop.htlc_minimum_msat.checked_sub(cur_hop_transferred_amount_msat) {
// Note that there is a risk that *previous hops* (those closer to us, as we go
// payee->our_node here) would exceed their htlc_maximum_msat or available balance.
//
// This might make us end up with a broken route, although this should be super-rare
// in practice, both because of how healthy channels look like, and how we pick
// channels in add_entry.
// Also, this can't be exploited more heavily than *announce a free path and fail
// all payments*.
cur_hop_transferred_amount_msat += extra_fees_msat;
total_fee_paid_msat += extra_fees_msat;
cur_hop_fees_msat += extra_fees_msat;
}
if last_hop {
// Final hop is a special case: it usually has just value_msat (by design), but also
// it still could overpay for the htlc_minimum_msat.
cur_hop.fee_msat = cur_hop_transferred_amount_msat;
2020-08-10 13:50:29 +03:00
} else {
// Propagate updated fees for the use of the channels to one hop back, where they
// will be actually paid (fee_msat). The last hop is handled above separately.
cur_hop.fee_msat = cur_hop_fees_msat;
2020-08-10 13:50:29 +03:00
}
// Fee for the use of the current hop which will be deducted on the previous hop.
// Irrelevant for the first hop, as it doesn't have the previous hop, and the use of
// this channel is free for us.
if i != 0 {
if let Some(new_fee) = compute_fees(cur_hop_transferred_amount_msat, cur_hop.channel_fees) {
cur_hop.hop_use_fee_msat = new_fee;
total_fee_paid_msat += new_fee;
} else {
// It should not be possible because this function is called only to reduce the
// value. In that case, compute_fee was already called with the same fees for
// larger amount and there was no overflow.
unreachable!();
}
}
2020-08-10 13:50:29 +03:00
}
}
}
fn compute_fees(amount_msat: u64, channel_fees: RoutingFees) -> Option<u64> {
let proportional_fee_millions =
amount_msat.checked_mul(channel_fees.proportional_millionths as u64);
if let Some(new_fee) = proportional_fee_millions.and_then(|part| {
(channel_fees.base_msat as u64).checked_add(part / 1_000_000) }) {
Some(new_fee)
} else {
// This function may be (indirectly) called without any verification,
// with channel_fees provided by a caller. We should handle it gracefully.
None
}
}
2020-08-10 13:50:29 +03:00
/// Gets a route from us (payer) to the given target node (payee).
///
/// If the payee provided features in their invoice, they should be provided via payee_features.
/// Without this, MPP will only be used if the payee's features are available in the network graph.
///
/// Extra routing hops between known nodes and the target will be used if they are included in
/// last_hops.
///
/// If some channels aren't announced, it may be useful to fill in a first_hops with the
/// results from a local ChannelManager::list_usable_channels() call. If it is filled in, our
2020-08-10 13:50:29 +03:00
/// view of our local channels (from net_graph_msg_handler) will be ignored, and only those
/// in first_hops will be used.
///
/// Panics if first_hops contains channels without short_channel_ids
/// (ChannelManager::list_usable_channels will never include such channels).
///
/// The fees on channels from us to next-hops are ignored (as they are assumed to all be
2020-08-10 13:50:29 +03:00
/// equal), however the enabled/disabled bit on such channels as well as the
/// htlc_minimum_msat/htlc_maximum_msat *are* checked as they may change based on the receiving node.
pub fn get_route<L: Deref>(our_node_id: &PublicKey, network: &NetworkGraph, payee: &PublicKey, payee_features: Option<InvoiceFeatures>, first_hops: Option<&[&ChannelDetails]>,
last_hops: &[&RouteHintHop], final_value_msat: u64, final_cltv: u32, logger: L) -> Result<Route, LightningError> where L::Target: Logger {
// TODO: Obviously *only* using total fee cost sucks. We should consider weighting by
// uptime/success in using a node in the past.
2020-08-10 13:50:29 +03:00
if *payee == *our_node_id {
return Err(LightningError{err: "Cannot generate a route to ourselves".to_owned(), action: ErrorAction::IgnoreError});
2017-12-25 01:05:27 -05:00
}
2020-06-16 18:58:06 +03:00
if final_value_msat > MAX_VALUE_MSAT {
return Err(LightningError{err: "Cannot generate a route of more value than all existing satoshis".to_owned(), action: ErrorAction::IgnoreError});
}
2020-08-10 13:50:29 +03:00
if final_value_msat == 0 {
return Err(LightningError{err: "Cannot send a payment of 0 msat".to_owned(), action: ErrorAction::IgnoreError});
}
for last_hop in last_hops {
if last_hop.src_node_id == *payee {
return Err(LightningError{err: "Last hop cannot have a payee as a source.".to_owned(), action: ErrorAction::IgnoreError});
}
}
// The general routing idea is the following:
// 1. Fill first/last hops communicated by the caller.
// 2. Attempt to construct a path from payer to payee for transferring
// any ~sufficient (described later) value.
// If succeed, remember which channels were used and how much liquidity they have available,
// so that future paths don't rely on the same liquidity.
// 3. Prooceed to the next step if:
// - we hit the recommended target value;
// - OR if we could not construct a new path. Any next attempt will fail too.
// Otherwise, repeat step 2.
// 4. See if we managed to collect paths which aggregately are able to transfer target value
// (not recommended value). If yes, proceed. If not, fail routing.
// 5. Randomly combine paths into routes having enough to fulfill the payment. (TODO: knapsack)
// 6. Of all the found paths, select only those with the lowest total fee.
// 7. The last path in every selected route is likely to be more than we need.
// Reduce its value-to-transfer and recompute fees.
// 8. Choose the best route by the lowest total fee.
// As for the actual search algorithm,
// we do a payee-to-payer pseudo-Dijkstra's sorting by each node's distance from the payee
// plus the minimum per-HTLC fee to get from it to another node (aka "shitty pseudo-A*").
//
// We are not a faithful Dijkstra's implementation because we can change values which impact
// earlier nodes while processing later nodes. Specifically, if we reach a channel with a lower
// liquidity limit (via htlc_maximum_msat, on-chain capacity or assumed liquidity limits) then
// the value we are currently attempting to send over a path, we simply reduce the value being
// sent along the path for any hops after that channel. This may imply that later fees (which
// we've already tabulated) are lower because a smaller value is passing through the channels
// (and the proportional fee is thus lower). There isn't a trivial way to recalculate the
// channels which were selected earlier (and which may still be used for other paths without a
// lower liquidity limit), so we simply accept that some liquidity-limited paths may be
// de-preferenced.
//
// One potentially problematic case for this algorithm would be if there are many
// liquidity-limited paths which are liquidity-limited near the destination (ie early in our
// graph walking), we may never find a path which is not liquidity-limited and has lower
// proportional fee (and only lower absolute fee when considering the ultimate value sent).
// Because we only consider paths with at least 5% of the total value being sent, the damage
// from such a case should be limited, however this could be further reduced in the future by
// calculating fees on the amount we wish to route over a path, ie ignoring the liquidity
// limits for the purposes of fee calculation.
//
// Alternatively, we could store more detailed path information in the heap (targets, below)
// and index the best-path map (dist, below) by node *and* HTLC limits, however that would blow
// up the runtime significantly both algorithmically (as we'd traverse nodes multiple times)
// and practically (as we would need to store dynamically-allocated path information in heap
// objects, increasing malloc traffic and indirect memory access significantly). Further, the
// results of such an algorithm would likely be biased towards lower-value paths.
//
// Further, we could return to a faithful Dijkstra's algorithm by rejecting paths with limits
// outside of our current search value, running a path search more times to gather candidate
// paths at different values. While this may be acceptable, further path searches may increase
// runtime for little gain. Specifically, the current algorithm rather efficiently explores the
// graph for candidate paths, calculating the maximum value which can realistically be sent at
// the same time, remaining generic across different payment values.
//
// TODO: There are a few tweaks we could do, including possibly pre-calculating more stuff
// to use as the A* heuristic beyond just the cost to get one node further than the current
// one.
2017-12-25 01:05:27 -05:00
let dummy_directional_info = DummyDirectionalChannelInfo { // used for first_hops routes
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: None,
fees: RoutingFees {
base_msat: 0,
proportional_millionths: 0,
}
};
// Allow MPP only if we have a features set from somewhere that indicates the payee supports
// it. If the payee supports it they're supposed to include it in the invoice, so that should
// work reliably.
let allow_mpp = if let Some(features) = &payee_features {
features.supports_basic_mpp()
} else if let Some(node) = network.get_nodes().get(&payee) {
if let Some(node_info) = node.announcement_info.as_ref() {
node_info.features.supports_basic_mpp()
} else { false }
} else { false };
2020-08-10 13:50:29 +03:00
// Step (1).
// Prepare the data we'll use for payee-to-payer search by
// inserting first hops suggested by the caller as targets.
// Our search will then attempt to reach them while traversing from the payee node.
let mut first_hop_targets: HashMap<_, (_, ChannelFeatures, _, NodeFeatures)> =
HashMap::with_capacity(if first_hops.is_some() { first_hops.as_ref().unwrap().len() } else { 0 });
if let Some(hops) = first_hops {
for chan in hops {
let short_channel_id = chan.short_channel_id.expect("first_hops should be filled in with usable channels, not pending ones");
if chan.remote_network_id == *our_node_id {
2020-08-10 13:50:29 +03:00
return Err(LightningError{err: "First hop cannot have our_node_id as a destination.".to_owned(), action: ErrorAction::IgnoreError});
}
first_hop_targets.insert(chan.remote_network_id, (short_channel_id, chan.counterparty_features.to_context(), chan.outbound_capacity_msat, chan.counterparty_features.to_context()));
}
if first_hop_targets.is_empty() {
return Err(LightningError{err: "Cannot route when there are no outbound routes away from us".to_owned(), action: ErrorAction::IgnoreError});
}
}
let empty_channel_features = ChannelFeatures::empty();
// The main heap containing all candidate next-hops sorted by their score (max(A* fee,
// htlc_minimum)). Ideally this would be a heap which allowed cheap score reduction instead of
// adding duplicate entries when we find a better path to a given node.
let mut targets = BinaryHeap::new();
// Map from node_id to information about the best current path to that node, including feerate
// information.
let mut dist = HashMap::with_capacity(network.get_nodes().len());
// During routing, if we ignore a path due to an htlc_minimum_msat limit, we set this,
// indicating that we may wish to try again with a higher value, potentially paying to meet an
// htlc_minimum with extra fees while still finding a cheaper path.
let mut hit_minimum_limit;
// When arranging a route, we select multiple paths so that we can make a multi-path payment.
// We start with a path_value of the exact amount we want, and if that generates a route we may
// return it immediately. Otherwise, we don't stop searching for paths until we have 3x the
// amount we want in total across paths, selecting the best subset at the end.
const ROUTE_CAPACITY_PROVISION_FACTOR: u64 = 3;
let recommended_value_msat = final_value_msat * ROUTE_CAPACITY_PROVISION_FACTOR as u64;
let mut path_value_msat = final_value_msat;
2020-08-10 13:50:29 +03:00
// We don't want multiple paths (as per MPP) share liquidity of the same channels.
// This map allows paths to be aware of the channel use by other paths in the same call.
// This would help to make a better path finding decisions and not "overbook" channels.
// It is unaware of the directions (except for `outbound_capacity_msat` in `first_hops`).
let mut bookkeeped_channels_liquidity_available_msat = HashMap::with_capacity(network.get_nodes().len());
2020-08-10 13:50:29 +03:00
// Keeping track of how much value we already collected across other paths. Helps to decide:
// - how much a new path should be transferring (upper bound);
// - whether a channel should be disregarded because
// it's available liquidity is too small comparing to how much more we need to collect;
// - when we want to stop looking for new paths.
let mut already_collected_value_msat = 0;
macro_rules! add_entry {
2020-05-03 16:06:59 -04:00
// Adds entry which goes from $src_node_id to $dest_node_id
// over the channel with id $chan_id with fees described in
// $directional_info.
2020-08-10 13:50:29 +03:00
// $next_hops_fee_msat represents the fees paid for using all the channel *after* this one,
// since that value has to be transferred over this channel.
( $chan_id: expr, $src_node_id: expr, $dest_node_id: expr, $directional_info: expr, $capacity_sats: expr, $chan_features: expr, $next_hops_fee_msat: expr,
$next_hops_value_contribution: expr, $next_hops_path_htlc_minimum_msat: expr ) => {
2020-08-10 13:50:29 +03:00
// Channels to self should not be used. This is more of belt-and-suspenders, because in
// practice these cases should be caught earlier:
// - for regular channels at channel announcement (TODO)
// - for first and last hops early in get_route
if $src_node_id != $dest_node_id.clone() {
let available_liquidity_msat = bookkeeped_channels_liquidity_available_msat.entry($chan_id.clone()).or_insert_with(|| {
let mut initial_liquidity_available_msat = None;
if let Some(capacity_sats) = $capacity_sats {
initial_liquidity_available_msat = Some(capacity_sats * 1000);
}
if let Some(htlc_maximum_msat) = $directional_info.htlc_maximum_msat {
2020-08-10 13:50:29 +03:00
if let Some(available_msat) = initial_liquidity_available_msat {
initial_liquidity_available_msat = Some(cmp::min(available_msat, htlc_maximum_msat));
} else {
2020-08-10 13:50:29 +03:00
initial_liquidity_available_msat = Some(htlc_maximum_msat);
}
}
2020-08-10 13:50:29 +03:00
match initial_liquidity_available_msat {
Some(available_msat) => available_msat,
// We assume channels with unknown balance have
// a capacity of 0.0025 BTC (or 250_000 sats).
None => 250_000 * 1000
}
});
// It is tricky to substract $next_hops_fee_msat from available liquidity here.
// It may be misleading because we might later choose to reduce the value transferred
// over these channels, and the channel which was insufficient might become sufficient.
// Worst case: we drop a good channel here because it can't cover the high following
// fees caused by one expensive channel, but then this channel could have been used
// if the amount being transferred over this path is lower.
// We do this for now, but this is a subject for removal.
if let Some(available_value_contribution_msat) = available_liquidity_msat.checked_sub($next_hops_fee_msat) {
// Routing Fragmentation Mitigation heuristic:
//
// Routing fragmentation across many payment paths increases the overall routing
// fees as you have irreducible routing fees per-link used (`fee_base_msat`).
// Taking too many smaller paths also increases the chance of payment failure.
// Thus to avoid this effect, we require from our collected links to provide
// at least a minimal contribution to the recommended value yet-to-be-fulfilled.
//
// This requirement is currently 5% of the remaining-to-be-collected value.
// This means as we successfully advance in our collection,
// the absolute liquidity contribution is lowered,
// thus increasing the number of potential channels to be selected.
// Derive the minimal liquidity contribution with a ratio of 20 (5%, rounded up)
// or 100% if we're not allowed to do multipath payments.
let minimal_value_contribution_msat: u64 = if allow_mpp {
(recommended_value_msat - already_collected_value_msat + 19) / 20
} else {
final_value_msat
};
2020-08-10 13:50:29 +03:00
// Verify the liquidity offered by this channel complies to the minimal contribution.
let contributes_sufficient_value = available_value_contribution_msat >= minimal_value_contribution_msat;
let value_contribution_msat = cmp::min(available_value_contribution_msat, $next_hops_value_contribution);
// Includes paying fees for the use of the following channels.
let amount_to_transfer_over_msat: u64 = match value_contribution_msat.checked_add($next_hops_fee_msat) {
Some(result) => result,
// Can't overflow due to how the values were computed right above.
None => unreachable!(),
};
#[allow(unused_comparisons)] // $next_hops_path_htlc_minimum_msat is 0 in some calls so rustc complains
let over_path_minimum_msat = amount_to_transfer_over_msat >= $directional_info.htlc_minimum_msat &&
amount_to_transfer_over_msat >= $next_hops_path_htlc_minimum_msat;
2020-08-10 13:50:29 +03:00
// If HTLC minimum is larger than the amount we're going to transfer, we shouldn't
// bother considering this channel.
// Since we're choosing amount_to_transfer_over_msat as maximum possible, it can
// be only reduced later (not increased), so this channel should just be skipped
// as not sufficient.
if !over_path_minimum_msat {
hit_minimum_limit = true;
} else if contributes_sufficient_value {
// Note that low contribution here (limited by available_liquidity_msat)
// might violate htlc_minimum_msat on the hops which are next along the
// payment path (upstream to the payee). To avoid that, we recompute path
// path fees knowing the final path contribution after constructing it.
let path_htlc_minimum_msat = match compute_fees($next_hops_path_htlc_minimum_msat, $directional_info.fees)
.map(|fee_msat| fee_msat.checked_add($next_hops_path_htlc_minimum_msat)) {
Some(Some(value_msat)) => cmp::max(value_msat, $directional_info.htlc_minimum_msat),
_ => u64::max_value()
};
2020-08-10 13:50:29 +03:00
let hm_entry = dist.entry(&$src_node_id);
let old_entry = hm_entry.or_insert_with(|| {
// If there was previously no known way to access
// the source node (recall it goes payee-to-payer) of $chan_id, first add
// a semi-dummy record just to compute the fees to reach the source node.
// This will affect our decision on selecting $chan_id
// as a way to reach the $dest_node_id.
let mut fee_base_msat = u32::max_value();
let mut fee_proportional_millionths = u32::max_value();
if let Some(Some(fees)) = network.get_nodes().get(&$src_node_id).map(|node| node.lowest_inbound_channel_fees) {
fee_base_msat = fees.base_msat;
fee_proportional_millionths = fees.proportional_millionths;
}
PathBuildingHop {
pubkey: $dest_node_id.clone(),
short_channel_id: 0,
channel_features: $chan_features,
fee_msat: 0,
cltv_expiry_delta: 0,
2020-08-10 13:50:29 +03:00
src_lowest_inbound_fees: RoutingFees {
base_msat: fee_base_msat,
proportional_millionths: fee_proportional_millionths,
},
channel_fees: $directional_info.fees,
next_hops_fee_msat: u64::max_value(),
hop_use_fee_msat: u64::max_value(),
total_fee_msat: u64::max_value(),
htlc_minimum_msat: $directional_info.htlc_minimum_msat,
path_htlc_minimum_msat,
was_processed: false,
#[cfg(any(test, feature = "fuzztarget"))]
value_contribution_msat,
2020-08-10 13:50:29 +03:00
}
});
#[allow(unused_mut)] // We only use the mut in cfg(test)
let mut should_process = !old_entry.was_processed;
#[cfg(any(test, feature = "fuzztarget"))]
{
// In test/fuzzing builds, we do extra checks to make sure the skipping
// of already-seen nodes only happens in cases we expect (see below).
if !should_process { should_process = true; }
}
2020-08-10 13:50:29 +03:00
if should_process {
let mut hop_use_fee_msat = 0;
let mut total_fee_msat = $next_hops_fee_msat;
// Ignore hop_use_fee_msat for channel-from-us as we assume all channels-from-us
// will have the same effective-fee
if $src_node_id != *our_node_id {
match compute_fees(amount_to_transfer_over_msat, $directional_info.fees) {
// max_value means we'll always fail
// the old_entry.total_fee_msat > total_fee_msat check
None => total_fee_msat = u64::max_value(),
Some(fee_msat) => {
hop_use_fee_msat = fee_msat;
total_fee_msat += hop_use_fee_msat;
// When calculating the lowest inbound fees to a node, we
// calculate fees here not based on the actual value we think
// will flow over this channel, but on the minimum value that
// we'll accept flowing over it. The minimum accepted value
// is a constant through each path collection run, ensuring
// consistent basis. Otherwise we may later find a
// different path to the source node that is more expensive,
// but which we consider to be cheaper because we are capacity
// constrained and the relative fee becomes lower.
match compute_fees(minimal_value_contribution_msat, old_entry.src_lowest_inbound_fees)
.map(|a| a.checked_add(total_fee_msat)) {
Some(Some(v)) => {
total_fee_msat = v;
},
_ => {
total_fee_msat = u64::max_value();
}
};
}
}
}
2020-08-10 13:50:29 +03:00
let new_graph_node = RouteGraphNode {
pubkey: $src_node_id,
lowest_fee_to_peer_through_node: total_fee_msat,
lowest_fee_to_node: $next_hops_fee_msat as u64 + hop_use_fee_msat,
value_contribution_msat: value_contribution_msat,
path_htlc_minimum_msat,
2020-08-10 13:50:29 +03:00
};
// Update the way of reaching $src_node_id with the given $chan_id (from $dest_node_id),
// if this way is cheaper than the already known
// (considering the cost to "reach" this channel from the route destination,
// the cost of using this channel,
// and the cost of routing to the source node of this channel).
// Also, consider that htlc_minimum_msat_difference, because we might end up
// paying it. Consider the following exploit:
// we use 2 paths to transfer 1.5 BTC. One of them is 0-fee normal 1 BTC path,
// and for the other one we picked a 1sat-fee path with htlc_minimum_msat of
// 1 BTC. Now, since the latter is more expensive, we gonna try to cut it
// by 0.5 BTC, but then match htlc_minimum_msat by paying a fee of 0.5 BTC
// to this channel.
// Ideally the scoring could be smarter (e.g. 0.5*htlc_minimum_msat here),
// but it may require additional tracking - we don't want to double-count
// the fees included in $next_hops_path_htlc_minimum_msat, but also
// can't use something that may decrease on future hops.
let old_cost = cmp::max(old_entry.total_fee_msat, old_entry.path_htlc_minimum_msat);
let new_cost = cmp::max(total_fee_msat, path_htlc_minimum_msat);
if !old_entry.was_processed && new_cost < old_cost {
targets.push(new_graph_node);
old_entry.next_hops_fee_msat = $next_hops_fee_msat;
old_entry.hop_use_fee_msat = hop_use_fee_msat;
old_entry.total_fee_msat = total_fee_msat;
old_entry.pubkey = $dest_node_id.clone();
old_entry.short_channel_id = $chan_id.clone();
old_entry.channel_features = $chan_features;
old_entry.fee_msat = 0; // This value will be later filled with hop_use_fee_msat of the following channel
old_entry.cltv_expiry_delta = $directional_info.cltv_expiry_delta as u32;
old_entry.channel_fees = $directional_info.fees;
old_entry.htlc_minimum_msat = $directional_info.htlc_minimum_msat;
old_entry.path_htlc_minimum_msat = path_htlc_minimum_msat;
#[cfg(any(test, feature = "fuzztarget"))]
{
old_entry.value_contribution_msat = value_contribution_msat;
}
} else if old_entry.was_processed && new_cost < old_cost {
#[cfg(any(test, feature = "fuzztarget"))]
{
// If we're skipping processing a node which was previously
// processed even though we found another path to it with a
// cheaper fee, check that it was because the second path we
// found (which we are processing now) has a lower value
// contribution due to an HTLC minimum limit.
//
// e.g. take a graph with two paths from node 1 to node 2, one
// through channel A, and one through channel B. Channel A and
// B are both in the to-process heap, with their scores set by
// a higher htlc_minimum than fee.
// Channel A is processed first, and the channels onwards from
// node 1 are added to the to-process heap. Thereafter, we pop
// Channel B off of the heap, note that it has a much more
// restrictive htlc_maximum_msat, and recalculate the fees for
// all of node 1's channels using the new, reduced, amount.
//
// This would be bogus - we'd be selecting a higher-fee path
// with a lower htlc_maximum_msat instead of the one we'd
// already decided to use.
debug_assert!(path_htlc_minimum_msat < old_entry.path_htlc_minimum_msat);
debug_assert!(value_contribution_msat < old_entry.value_contribution_msat);
}
}
2017-12-25 01:05:27 -05:00
}
}
}
}
};
}
2017-12-25 01:05:27 -05:00
let empty_node_features = NodeFeatures::empty();
2020-08-10 13:50:29 +03:00
// Find ways (channels with destination) to reach a given node and store them
// in the corresponding data structures (routing graph etc).
// $fee_to_target_msat represents how much it costs to reach to this node from the payee,
// meaning how much will be paid in fees after this node (to the best of our knowledge).
// This data can later be helpful to optimize routing (pay lower fees).
macro_rules! add_entries_to_cheapest_to_target_node {
( $node: expr, $node_id: expr, $fee_to_target_msat: expr, $next_hops_value_contribution: expr, $next_hops_path_htlc_minimum_msat: expr ) => {
let skip_node = if let Some(elem) = dist.get_mut($node_id) {
let was_processed = elem.was_processed;
elem.was_processed = true;
was_processed
} else {
// Entries are added to dist in add_entry!() when there is a channel from a node.
// Because there are no channels from payee, it will not have a dist entry at this point.
// If we're processing any other node, it is always be the result of a channel from it.
assert_eq!($node_id, payee);
false
};
if !skip_node {
if first_hops.is_some() {
if let Some(&(ref first_hop, ref features, ref outbound_capacity_msat, _)) = first_hop_targets.get(&$node_id) {
add_entry!(first_hop, *our_node_id, $node_id, dummy_directional_info, Some(outbound_capacity_msat / 1000), features, $fee_to_target_msat, $next_hops_value_contribution, $next_hops_path_htlc_minimum_msat);
}
}
let features = if let Some(node_info) = $node.announcement_info.as_ref() {
&node_info.features
} else {
&empty_node_features
};
if !features.requires_unknown_bits() {
for chan_id in $node.channels.iter() {
let chan = network.get_channels().get(chan_id).unwrap();
if !chan.features.requires_unknown_bits() {
if chan.node_one == *$node_id {
// ie $node is one, ie next hop in A* is two, via the two_to_one channel
if first_hops.is_none() || chan.node_two != *our_node_id {
if let Some(two_to_one) = chan.two_to_one.as_ref() {
if two_to_one.enabled {
add_entry!(chan_id, chan.node_two, chan.node_one, two_to_one, chan.capacity_sats, &chan.features, $fee_to_target_msat, $next_hops_value_contribution, $next_hops_path_htlc_minimum_msat);
}
2020-05-03 16:06:59 -04:00
}
}
} else {
if first_hops.is_none() || chan.node_one != *our_node_id {
if let Some(one_to_two) = chan.one_to_two.as_ref() {
if one_to_two.enabled {
add_entry!(chan_id, chan.node_one, chan.node_two, one_to_two, chan.capacity_sats, &chan.features, $fee_to_target_msat, $next_hops_value_contribution, $next_hops_path_htlc_minimum_msat);
}
2020-05-03 16:06:59 -04:00
}
}
}
2017-12-25 01:05:27 -05:00
}
}
}
}
};
}
2017-12-25 01:05:27 -05:00
2020-08-10 13:50:29 +03:00
let mut payment_paths = Vec::<PaymentPath>::new();
// TODO: diversify by nodes (so that all paths aren't doomed if one node is offline).
'paths_collection: loop {
// For every new path, start from scratch, except
// bookkeeped_channels_liquidity_available_msat, which will improve
// the further iterations of path finding. Also don't erase first_hop_targets.
targets.clear();
dist.clear();
hit_minimum_limit = false;
2020-08-10 13:50:29 +03:00
// If first hop is a private channel and the only way to reach the payee, this is the only
// place where it could be added.
if first_hops.is_some() {
if let Some(&(ref first_hop, ref features, ref outbound_capacity_msat, _)) = first_hop_targets.get(&payee) {
add_entry!(first_hop, *our_node_id, payee, dummy_directional_info, Some(outbound_capacity_msat / 1000), features, 0, path_value_msat, 0);
}
}
2017-12-25 01:05:27 -05:00
2020-08-10 13:50:29 +03:00
// Add the payee as a target, so that the payee-to-payer
// search algorithm knows what to start with.
match network.get_nodes().get(payee) {
// The payee is not in our network graph, so nothing to add here.
// There is still a chance of reaching them via last_hops though,
// so don't yet fail the payment here.
// If not, targets.pop() will not even let us enter the loop in step 2.
None => {},
Some(node) => {
add_entries_to_cheapest_to_target_node!(node, payee, 0, path_value_msat, 0);
2020-08-10 13:50:29 +03:00
},
2017-12-25 01:05:27 -05:00
}
2020-08-10 13:50:29 +03:00
// Step (1).
// If a caller provided us with last hops, add them to routing targets. Since this happens
// earlier than general path finding, they will be somewhat prioritized, although currently
// it matters only if the fees are exactly the same.
for hop in last_hops.iter() {
let have_hop_src_in_graph =
if let Some(&(ref first_hop, ref features, ref outbound_capacity_msat, _)) = first_hop_targets.get(&hop.src_node_id) {
2020-08-10 13:50:29 +03:00
// If this hop connects to a node with which we have a direct channel, ignore
// the network graph and add both the hop and our direct channel to
// the candidate set.
//
// Currently there are no channel-context features defined, so we are a
// bit lazy here. In the future, we should pull them out via our
// ChannelManager, but there's no reason to waste the space until we
// need them.
add_entry!(first_hop, *our_node_id , hop.src_node_id, dummy_directional_info, Some(outbound_capacity_msat / 1000), features, 0, path_value_msat, 0);
2020-08-10 13:50:29 +03:00
true
} else {
// In any other case, only add the hop if the source is in the regular network
// graph:
network.get_nodes().get(&hop.src_node_id).is_some()
};
if have_hop_src_in_graph {
// BOLT 11 doesn't allow inclusion of features for the last hop hints, which
// really sucks, cause we're gonna need that eventually.
let last_hop_htlc_minimum_msat: u64 = match hop.htlc_minimum_msat {
Some(htlc_minimum_msat) => htlc_minimum_msat,
None => 0
};
let directional_info = DummyDirectionalChannelInfo {
cltv_expiry_delta: hop.cltv_expiry_delta as u32,
htlc_minimum_msat: last_hop_htlc_minimum_msat,
htlc_maximum_msat: hop.htlc_maximum_msat,
fees: hop.fees,
};
add_entry!(hop.short_channel_id, hop.src_node_id, payee, directional_info, None::<u64>, &empty_channel_features, 0, path_value_msat, 0);
2020-08-10 13:50:29 +03:00
}
2017-12-25 01:05:27 -05:00
}
2020-08-10 13:50:29 +03:00
// At this point, targets are filled with the data from first and
// last hops communicated by the caller, and the payment receiver.
let mut found_new_path = false;
// Step (2).
// If this loop terminates due the exhaustion of targets, two situations are possible:
// - not enough outgoing liquidity:
// 0 < already_collected_value_msat < final_value_msat
// - enough outgoing liquidity:
// final_value_msat <= already_collected_value_msat < recommended_value_msat
// Both these cases (and other cases except reaching recommended_value_msat) mean that
// paths_collection will be stopped because found_new_path==false.
// This is not necessarily a routing failure.
'path_construction: while let Some(RouteGraphNode { pubkey, lowest_fee_to_node, value_contribution_msat, path_htlc_minimum_msat, .. }) = targets.pop() {
2020-08-10 13:50:29 +03:00
// Since we're going payee-to-payer, hitting our node as a target means we should stop
// traversing the graph and arrange the path out of what we found.
if pubkey == *our_node_id {
let mut new_entry = dist.remove(&our_node_id).unwrap();
let mut ordered_hops = vec!((new_entry.clone(), NodeFeatures::empty()));
2020-08-10 13:50:29 +03:00
'path_walk: loop {
if let Some(&(_, _, _, ref features)) = first_hop_targets.get(&ordered_hops.last().unwrap().0.pubkey) {
ordered_hops.last_mut().unwrap().1 = features.clone();
} else if let Some(node) = network.get_nodes().get(&ordered_hops.last().unwrap().0.pubkey) {
2020-08-10 13:50:29 +03:00
if let Some(node_info) = node.announcement_info.as_ref() {
ordered_hops.last_mut().unwrap().1 = node_info.features.clone();
2020-08-10 13:50:29 +03:00
} else {
ordered_hops.last_mut().unwrap().1 = NodeFeatures::empty();
2020-08-10 13:50:29 +03:00
}
} else {
2020-08-10 13:50:29 +03:00
// We should be able to fill in features for everything except the last
// hop, if the last hop was provided via a BOLT 11 invoice (though we
// should be able to extend it further as BOLT 11 does have feature
// flags for the last hop node itself).
assert!(ordered_hops.last().unwrap().0.pubkey == *payee);
}
2020-08-10 13:50:29 +03:00
// Means we succesfully traversed from the payer to the payee, now
// save this path for the payment route. Also, update the liquidity
// remaining on the used hops, so that we take them into account
// while looking for more paths.
if ordered_hops.last().unwrap().0.pubkey == *payee {
2020-08-10 13:50:29 +03:00
break 'path_walk;
}
new_entry = match dist.remove(&ordered_hops.last().unwrap().0.pubkey) {
2020-08-10 13:50:29 +03:00
Some(payment_hop) => payment_hop,
// We can't arrive at None because, if we ever add an entry to targets,
// we also fill in the entry in dist (see add_entry!).
None => unreachable!(),
};
// We "propagate" the fees one hop backward (topologically) here,
// so that fees paid for a HTLC forwarding on the current channel are
// associated with the previous channel (where they will be subtracted).
ordered_hops.last_mut().unwrap().0.fee_msat = new_entry.hop_use_fee_msat;
ordered_hops.last_mut().unwrap().0.cltv_expiry_delta = new_entry.cltv_expiry_delta;
ordered_hops.push((new_entry.clone(), NodeFeatures::empty()));
}
ordered_hops.last_mut().unwrap().0.fee_msat = value_contribution_msat;
ordered_hops.last_mut().unwrap().0.hop_use_fee_msat = 0;
ordered_hops.last_mut().unwrap().0.cltv_expiry_delta = final_cltv;
2020-08-10 13:50:29 +03:00
let mut payment_path = PaymentPath {hops: ordered_hops};
// We could have possibly constructed a slightly inconsistent path: since we reduce
// value being transferred along the way, we could have violated htlc_minimum_msat
// on some channels we already passed (assuming dest->source direction). Here, we
// recompute the fees again, so that if that's the case, we match the currently
// underpaid htlc_minimum_msat with fees.
payment_path.update_value_and_recompute_fees(cmp::min(value_contribution_msat, final_value_msat));
2020-08-10 13:50:29 +03:00
// Since a path allows to transfer as much value as
// the smallest channel it has ("bottleneck"), we should recompute
// the fees so sender HTLC don't overpay fees when traversing
// larger channels than the bottleneck. This may happen because
// when we were selecting those channels we were not aware how much value
// this path will transfer, and the relative fee for them
// might have been computed considering a larger value.
// Remember that we used these channels so that we don't rely
// on the same liquidity in future paths.
let mut prevented_redundant_path_selection = false;
for (payment_hop, _) in payment_path.hops.iter() {
let channel_liquidity_available_msat = bookkeeped_channels_liquidity_available_msat.get_mut(&payment_hop.short_channel_id).unwrap();
2020-08-10 13:50:29 +03:00
let mut spent_on_hop_msat = value_contribution_msat;
let next_hops_fee_msat = payment_hop.next_hops_fee_msat;
spent_on_hop_msat += next_hops_fee_msat;
if spent_on_hop_msat == *channel_liquidity_available_msat {
// If this path used all of this channel's available liquidity, we know
// this path will not be selected again in the next loop iteration.
prevented_redundant_path_selection = true;
}
2020-08-10 13:50:29 +03:00
*channel_liquidity_available_msat -= spent_on_hop_msat;
2017-12-25 01:05:27 -05:00
}
if !prevented_redundant_path_selection {
// If we weren't capped by hitting a liquidity limit on a channel in the path,
// we'll probably end up picking the same path again on the next iteration.
// Decrease the available liquidity of a hop in the middle of the path.
let victim_liquidity = bookkeeped_channels_liquidity_available_msat.get_mut(
&payment_path.hops[(payment_path.hops.len() - 1) / 2].0.short_channel_id).unwrap();
*victim_liquidity = 0;
}
2020-08-10 13:50:29 +03:00
// Track the total amount all our collected paths allow to send so that we:
// - know when to stop looking for more paths
// - know which of the hops are useless considering how much more sats we need
// (contributes_sufficient_value)
already_collected_value_msat += value_contribution_msat;
payment_paths.push(payment_path);
found_new_path = true;
break 'path_construction;
}
2017-12-25 01:05:27 -05:00
// If we found a path back to the payee, we shouldn't try to process it again. This is
// the equivalent of the `elem.was_processed` check in
// add_entries_to_cheapest_to_target_node!() (see comment there for more info).
if pubkey == *payee { continue 'path_construction; }
2020-08-10 13:50:29 +03:00
// Otherwise, since the current target node is not us,
// keep "unrolling" the payment graph from payee to payer by
// finding a way to reach the current target from the payer side.
match network.get_nodes().get(&pubkey) {
None => {},
Some(node) => {
add_entries_to_cheapest_to_target_node!(node, &pubkey, lowest_fee_to_node, value_contribution_msat, path_htlc_minimum_msat);
2020-08-10 13:50:29 +03:00
},
2017-12-25 01:05:27 -05:00
}
}
if !allow_mpp {
// If we don't support MPP, no use trying to gather more value ever.
break 'paths_collection;
}
2020-08-10 13:50:29 +03:00
// Step (3).
// Stop either when the recommended value is reached or if no new path was found in this
// iteration.
// In the latter case, making another path finding attempt won't help,
// because we deterministically terminated the search due to low liquidity.
2020-08-10 13:50:29 +03:00
if already_collected_value_msat >= recommended_value_msat || !found_new_path {
break 'paths_collection;
} else if found_new_path && already_collected_value_msat == final_value_msat && payment_paths.len() == 1 {
// Further, if this was our first walk of the graph, and we weren't limited by an
// htlc_minimum_msat, return immediately because this path should suffice. If we were
// limited by an htlc_minimum_msat value, find another path with a higher value,
// potentially allowing us to pay fees to meet the htlc_minimum on the new path while
// still keeping a lower total fee than this path.
if !hit_minimum_limit {
break 'paths_collection;
}
path_value_msat = recommended_value_msat;
2020-08-10 13:50:29 +03:00
}
}
// Step (4).
if payment_paths.len() == 0 {
return Err(LightningError{err: "Failed to find a path to the given destination".to_owned(), action: ErrorAction::IgnoreError});
}
if already_collected_value_msat < final_value_msat {
return Err(LightningError{err: "Failed to find a sufficient route to the given destination".to_owned(), action: ErrorAction::IgnoreError});
}
// Sort by total fees and take the best paths.
payment_paths.sort_by_key(|path| path.get_total_fee_paid_msat());
if payment_paths.len() > 50 {
payment_paths.truncate(50);
}
// Draw multiple sufficient routes by randomly combining the selected paths.
let mut drawn_routes = Vec::new();
for i in 0..payment_paths.len() {
let mut cur_route = Vec::<PaymentPath>::new();
let mut aggregate_route_value_msat = 0;
// Step (5).
// TODO: real random shuffle
// Currently just starts with i_th and goes up to i-1_th in a looped way.
let cur_payment_paths = [&payment_paths[i..], &payment_paths[..i]].concat();
// Step (6).
for payment_path in cur_payment_paths {
cur_route.push(payment_path.clone());
aggregate_route_value_msat += payment_path.get_value_msat();
if aggregate_route_value_msat > final_value_msat {
// Last path likely overpaid. Substract it from the most expensive
// (in terms of proportional fee) path in this route and recompute fees.
// This might be not the most economically efficient way, but fewer paths
// also makes routing more reliable.
let mut overpaid_value_msat = aggregate_route_value_msat - final_value_msat;
// First, drop some expensive low-value paths entirely if possible.
// Sort by value so that we drop many really-low values first, since
// fewer paths is better: the payment is less likely to fail.
// TODO: this could also be optimized by also sorting by feerate_per_sat_routed,
// so that the sender pays less fees overall. And also htlc_minimum_msat.
2020-08-10 13:50:29 +03:00
cur_route.sort_by_key(|path| path.get_value_msat());
// We should make sure that at least 1 path left.
let mut paths_left = cur_route.len();
cur_route.retain(|path| {
if paths_left == 1 {
return true
}
let mut keep = true;
let path_value_msat = path.get_value_msat();
if path_value_msat <= overpaid_value_msat {
keep = false;
overpaid_value_msat -= path_value_msat;
paths_left -= 1;
}
keep
});
if overpaid_value_msat == 0 {
break;
}
assert!(cur_route.len() > 0);
// Step (7).
// Now, substract the overpaid value from the most-expensive path.
// TODO: this could also be optimized by also sorting by feerate_per_sat_routed,
// so that the sender pays less fees overall. And also htlc_minimum_msat.
cur_route.sort_by_key(|path| { path.hops.iter().map(|hop| hop.0.channel_fees.proportional_millionths as u64).sum::<u64>() });
2021-03-02 21:30:34 -08:00
let expensive_payment_path = cur_route.first_mut().unwrap();
// We already dropped all the small channels above, meaning all the
// remaining channels are larger than remaining overpaid_value_msat.
// Thus, this can't be negative.
2020-08-10 13:50:29 +03:00
let expensive_path_new_value_msat = expensive_payment_path.get_value_msat() - overpaid_value_msat;
expensive_payment_path.update_value_and_recompute_fees(expensive_path_new_value_msat);
break;
}
}
2020-08-10 13:50:29 +03:00
drawn_routes.push(cur_route);
}
// Step (8).
// Select the best route by lowest total fee.
drawn_routes.sort_by_key(|paths| paths.iter().map(|path| path.get_total_fee_paid_msat()).sum::<u64>());
let mut selected_paths = Vec::<Vec<RouteHop>>::new();
2020-08-10 13:50:29 +03:00
for payment_path in drawn_routes.first().unwrap() {
selected_paths.push(payment_path.hops.iter().map(|(payment_hop, node_features)| {
RouteHop {
pubkey: payment_hop.pubkey,
node_features: node_features.clone(),
short_channel_id: payment_hop.short_channel_id,
channel_features: payment_hop.channel_features.clone(),
fee_msat: payment_hop.fee_msat,
cltv_expiry_delta: payment_hop.cltv_expiry_delta,
}
}).collect());
2017-12-25 01:05:27 -05:00
}
if let Some(features) = &payee_features {
for path in selected_paths.iter_mut() {
path.last_mut().unwrap().node_features = features.to_context();
}
}
2020-08-10 13:50:29 +03:00
let route = Route { paths: selected_paths };
log_trace!(logger, "Got route: {}", log_route!(route));
Ok(route)
2017-12-25 01:05:27 -05:00
}
#[cfg(test)]
mod tests {
use routing::router::{get_route, RouteHintHop, RoutingFees};
use routing::network_graph::{NetworkGraph, NetGraphMsgHandler};
use chain::transaction::OutPoint;
use ln::features::{ChannelFeatures, InitFeatures, InvoiceFeatures, NodeFeatures};
2020-06-28 14:43:10 +03:00
use ln::msgs::{ErrorAction, LightningError, OptionalField, UnsignedChannelAnnouncement, ChannelAnnouncement, RoutingMessageHandler,
NodeAnnouncement, UnsignedNodeAnnouncement, ChannelUpdate, UnsignedChannelUpdate};
use ln::channelmanager;
use util::test_utils;
use util::ser::Writeable;
2017-12-25 01:05:27 -05:00
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
use bitcoin::hashes::Hash;
use bitcoin::network::constants::Network;
use bitcoin::blockdata::constants::genesis_block;
2020-08-10 13:50:29 +03:00
use bitcoin::blockdata::script::Builder;
use bitcoin::blockdata::opcodes;
use bitcoin::blockdata::transaction::TxOut;
2017-12-25 01:05:27 -05:00
use hex;
2020-04-27 16:51:59 +02:00
use bitcoin::secp256k1::key::{PublicKey,SecretKey};
use bitcoin::secp256k1::{Secp256k1, All};
2017-12-25 01:05:27 -05:00
use std::sync::Arc;
// Using the same keys for LN and BTC ids
fn add_channel(net_graph_msg_handler: &NetGraphMsgHandler<Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>, secp_ctx: &Secp256k1<All>, node_1_privkey: &SecretKey,
node_2_privkey: &SecretKey, features: ChannelFeatures, short_channel_id: u64) {
let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
let unsigned_announcement = UnsignedChannelAnnouncement {
features,
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id,
node_id_1,
node_id_2,
bitcoin_key_1: node_id_1,
bitcoin_key_2: node_id_2,
excess_data: Vec::new(),
};
let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
let valid_announcement = ChannelAnnouncement {
node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
contents: unsigned_announcement.clone(),
};
match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
Ok(res) => assert!(res),
_ => panic!()
};
}
fn update_channel(net_graph_msg_handler: &NetGraphMsgHandler<Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>, secp_ctx: &Secp256k1<All>, node_privkey: &SecretKey, update: UnsignedChannelUpdate) {
let msghash = hash_to_message!(&Sha256dHash::hash(&update.encode()[..])[..]);
let valid_channel_update = ChannelUpdate {
signature: secp_ctx.sign(&msghash, node_privkey),
contents: update.clone()
};
2017-12-25 01:05:27 -05:00
match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
Ok(res) => assert!(res),
2020-08-10 13:50:29 +03:00
Err(_) => panic!()
};
}
fn add_or_update_node(net_graph_msg_handler: &NetGraphMsgHandler<Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>, secp_ctx: &Secp256k1<All>, node_privkey: &SecretKey,
features: NodeFeatures, timestamp: u32) {
let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
let unsigned_announcement = UnsignedNodeAnnouncement {
features,
timestamp,
node_id,
rgb: [0; 3],
alias: [0; 32],
addresses: Vec::new(),
excess_address_data: Vec::new(),
excess_data: Vec::new(),
};
let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
let valid_announcement = NodeAnnouncement {
signature: secp_ctx.sign(&msghash, node_privkey),
contents: unsigned_announcement.clone()
};
match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
Ok(_) => (),
Err(_) => panic!()
};
}
fn get_nodes(secp_ctx: &Secp256k1<All>) -> (SecretKey, PublicKey, Vec<SecretKey>, Vec<PublicKey>) {
let privkeys: Vec<SecretKey> = (2..10).map(|i| {
SecretKey::from_slice(&hex::decode(format!("{:02}", i).repeat(32)).unwrap()[..]).unwrap()
}).collect();
let pubkeys = privkeys.iter().map(|secret| PublicKey::from_secret_key(&secp_ctx, secret)).collect();
let our_privkey = SecretKey::from_slice(&hex::decode("01".repeat(32)).unwrap()[..]).unwrap();
let our_id = PublicKey::from_secret_key(&secp_ctx, &our_privkey);
(our_privkey, our_id, privkeys, pubkeys)
}
fn id_to_feature_flags(id: u8) -> Vec<u8> {
// Set the feature flags to the id'th odd (ie non-required) feature bit so that we can
// test for it later.
let idx = (id - 1) * 2 + 1;
if idx > 8*3 {
vec![1 << (idx - 8*3), 0, 0, 0]
} else if idx > 8*2 {
vec![1 << (idx - 8*2), 0, 0]
} else if idx > 8*1 {
vec![1 << (idx - 8*1), 0]
} else {
vec![1 << idx]
}
}
2020-08-10 13:50:29 +03:00
fn build_graph() -> (Secp256k1<All>, NetGraphMsgHandler<std::sync::Arc<test_utils::TestChainSource>, std::sync::Arc<crate::util::test_utils::TestLogger>>, std::sync::Arc<test_utils::TestChainSource>, std::sync::Arc<test_utils::TestLogger>) {
let secp_ctx = Secp256k1::new();
let logger = Arc::new(test_utils::TestLogger::new());
2020-08-10 13:50:29 +03:00
let chain_monitor = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
let net_graph_msg_handler = NetGraphMsgHandler::new(genesis_block(Network::Testnet).header.block_hash(), None, Arc::clone(&logger));
// Build network from our_id to node7:
//
// -1(1)2- node0 -1(3)2-
// / \
// our_id -1(12)2- node7 -1(13)2--- node2
// \ /
// -1(2)2- node1 -1(4)2-
//
2017-12-25 01:05:27 -05:00
//
// chan1 1-to-2: disabled
// chan1 2-to-1: enabled, 0 fee
2017-12-25 01:05:27 -05:00
//
// chan2 1-to-2: enabled, ignored fee
// chan2 2-to-1: enabled, 0 fee
2017-12-25 01:05:27 -05:00
//
// chan3 1-to-2: enabled, 0 fee
// chan3 2-to-1: enabled, 100 msat fee
2017-12-25 01:05:27 -05:00
//
// chan4 1-to-2: enabled, 100% fee
// chan4 2-to-1: enabled, 0 fee
2017-12-25 01:05:27 -05:00
//
// chan12 1-to-2: enabled, ignored fee
// chan12 2-to-1: enabled, 0 fee
2017-12-25 01:05:27 -05:00
//
// chan13 1-to-2: enabled, 200% fee
// chan13 2-to-1: enabled, 0 fee
2017-12-25 01:05:27 -05:00
//
//
// -1(5)2- node3 -1(8)2--
2017-12-25 01:05:27 -05:00
// | 2 |
// | (11) |
// / 1 \
// node2--1(6)2- node4 -1(9)2--- node6 (not in global route map)
2017-12-25 01:05:27 -05:00
// \ /
// -1(7)2- node5 -1(10)2-
2017-12-25 01:05:27 -05:00
//
// chan5 1-to-2: enabled, 100 msat fee
// chan5 2-to-1: enabled, 0 fee
//
// chan6 1-to-2: enabled, 0 fee
// chan6 2-to-1: enabled, 0 fee
//
// chan7 1-to-2: enabled, 100% fee
// chan7 2-to-1: enabled, 0 fee
//
// chan8 1-to-2: enabled, variable fee (0 then 1000 msat)
// chan8 2-to-1: enabled, 0 fee
//
// chan9 1-to-2: enabled, 1001 msat fee
// chan9 2-to-1: enabled, 0 fee
//
// chan10 1-to-2: enabled, 0 fee
// chan10 2-to-1: enabled, 0 fee
//
// chan11 1-to-2: enabled, 0 fee
// chan11 2-to-1: enabled, 0 fee
let (our_privkey, _, privkeys, _) = get_nodes(&secp_ctx);
add_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, &privkeys[0], ChannelFeatures::from_le_bytes(id_to_feature_flags(1)), 1);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 1,
timestamp: 1,
flags: 1,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
2017-12-25 01:05:27 -05:00
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[0], NodeFeatures::from_le_bytes(id_to_feature_flags(1)), 0);
add_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, &privkeys[1], ChannelFeatures::from_le_bytes(id_to_feature_flags(2)), 2);
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 1,
flags: 0,
cltv_expiry_delta: u16::max_value(),
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: u32::max_value(),
fee_proportional_millionths: u32::max_value(),
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 1,
flags: 1,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
2017-12-25 01:05:27 -05:00
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[1], NodeFeatures::from_le_bytes(id_to_feature_flags(2)), 0);
add_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, &privkeys[7], ChannelFeatures::from_le_bytes(id_to_feature_flags(12)), 12);
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 1,
flags: 0,
cltv_expiry_delta: u16::max_value(),
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: u32::max_value(),
fee_proportional_millionths: u32::max_value(),
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 1,
flags: 1,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[7], NodeFeatures::from_le_bytes(id_to_feature_flags(8)), 0);
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], &privkeys[2], ChannelFeatures::from_le_bytes(id_to_feature_flags(3)), 3);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 3,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (3 << 8) | 1,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 3,
timestamp: 1,
flags: 1,
cltv_expiry_delta: (3 << 8) | 2,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 100,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], &privkeys[2], ChannelFeatures::from_le_bytes(id_to_feature_flags(4)), 4);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 4,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (4 << 8) | 1,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 1000000,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 4,
timestamp: 1,
flags: 1,
cltv_expiry_delta: (4 << 8) | 2,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], &privkeys[2], ChannelFeatures::from_le_bytes(id_to_feature_flags(13)), 13);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 13,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (13 << 8) | 1,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 2000000,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 13,
timestamp: 1,
flags: 1,
cltv_expiry_delta: (13 << 8) | 2,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[2], NodeFeatures::from_le_bytes(id_to_feature_flags(3)), 0);
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], &privkeys[4], ChannelFeatures::from_le_bytes(id_to_feature_flags(6)), 6);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 6,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (6 << 8) | 1,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 6,
timestamp: 1,
flags: 1,
cltv_expiry_delta: (6 << 8) | 2,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new(),
});
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], &privkeys[3], ChannelFeatures::from_le_bytes(id_to_feature_flags(11)), 11);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 11,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (11 << 8) | 1,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[3], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 11,
timestamp: 1,
flags: 1,
cltv_expiry_delta: (11 << 8) | 2,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[4], NodeFeatures::from_le_bytes(id_to_feature_flags(5)), 0);
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[3], NodeFeatures::from_le_bytes(id_to_feature_flags(4)), 0);
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], &privkeys[5], ChannelFeatures::from_le_bytes(id_to_feature_flags(7)), 7);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 7,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (7 << 8) | 1,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 1000000,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[5], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 7,
timestamp: 1,
flags: 1,
cltv_expiry_delta: (7 << 8) | 2,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[5], NodeFeatures::from_le_bytes(id_to_feature_flags(6)), 0);
2020-08-10 13:50:29 +03:00
(secp_ctx, net_graph_msg_handler, chain_monitor, logger)
}
#[test]
fn simple_route_test() {
2020-08-10 13:50:29 +03:00
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (_, our_id, _, nodes) = get_nodes(&secp_ctx);
2020-08-10 13:50:29 +03:00
// Simple route to 2 via 1
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 0, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "Cannot send a payment of 0 msat");
} else { panic!(); }
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 100, 42, Arc::clone(&logger)).unwrap();
assert_eq!(route.paths[0].len(), 2);
assert_eq!(route.paths[0][0].pubkey, nodes[1]);
assert_eq!(route.paths[0][0].short_channel_id, 2);
assert_eq!(route.paths[0][0].fee_msat, 100);
assert_eq!(route.paths[0][0].cltv_expiry_delta, (4 << 8) | 1);
assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(2));
assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(2));
assert_eq!(route.paths[0][1].pubkey, nodes[2]);
assert_eq!(route.paths[0][1].short_channel_id, 4);
assert_eq!(route.paths[0][1].fee_msat, 100);
assert_eq!(route.paths[0][1].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3));
assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(4));
}
#[test]
2020-08-10 13:50:29 +03:00
fn invalid_first_hop_test() {
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (_, our_id, _, nodes) = get_nodes(&secp_ctx);
// Simple route to 2 via 1
let our_chans = vec![channelmanager::ChannelDetails {
channel_id: [0; 32],
funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }),
2020-08-10 13:50:29 +03:00
short_channel_id: Some(2),
remote_network_id: our_id,
counterparty_features: InitFeatures::from_le_bytes(vec![0b11]),
channel_value_satoshis: 100000,
user_id: 0,
outbound_capacity_msat: 100000,
inbound_capacity_msat: 100000,
is_live: true, is_public: true,
counterparty_forwarding_info: None,
2020-08-10 13:50:29 +03:00
}];
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, Some(&our_chans.iter().collect::<Vec<_>>()), &Vec::new(), 100, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "First hop cannot have our_node_id as a destination.");
} else { panic!(); }
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 100, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths[0].len(), 2);
}
#[test]
fn htlc_minimum_test() {
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
2020-08-10 13:50:29 +03:00
// Simple route to 2 via 1
// Disable other paths
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 2,
flags: 2, // to disable
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
2020-08-10 13:50:29 +03:00
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
2020-08-25 17:12:00 -04:00
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2020-08-10 13:50:29 +03:00
short_channel_id: 3,
timestamp: 2,
flags: 2, // to disable
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 13,
timestamp: 2,
flags: 2, // to disable
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 6,
timestamp: 2,
flags: 2, // to disable
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 7,
timestamp: 2,
flags: 2, // to disable
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
2020-06-28 14:43:10 +03:00
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Check against amount_to_transfer_over_msat.
2020-08-10 13:50:29 +03:00
// Set minimal HTLC of 200_000_000 msat.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 3,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 200_000_000,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
2020-08-10 13:50:29 +03:00
// Second hop only allows to forward 199_999_999 at most, thus not allowing the first hop to
// be used.
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 4,
timestamp: 3,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(199_999_999),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
2020-08-10 13:50:29 +03:00
// Not possible to send 199_999_999, because the minimum on channel=2 is 200_000_000.
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 199_999_999, 42, Arc::clone(&logger)) {
assert_eq!(err, "Failed to find a path to the given destination");
} else { panic!(); }
2020-08-10 13:50:29 +03:00
// Lift the restriction on the first hop.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 4,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
2020-08-10 13:50:29 +03:00
// A payment above the minimum should pass
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 199_999_999, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths[0].len(), 2);
}
#[test]
fn htlc_minimum_overpay_test() {
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
// A route to node#2 via two paths.
// One path allows transferring 35-40 sats, another one also allows 35-40 sats.
// Thus, they can't send 60 without overpaying.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 35_000,
htlc_maximum_msat: OptionalField::Present(40_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 3,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 35_000,
htlc_maximum_msat: OptionalField::Present(40_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Make 0 fee.
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 13,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 4,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Disable other paths
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 1,
timestamp: 3,
flags: 2, // to disable
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 60_000, 42, Arc::clone(&logger)).unwrap();
// Overpay fees to hit htlc_minimum_msat.
let overpaid_fees = route.paths[0][0].fee_msat + route.paths[1][0].fee_msat;
// TODO: this could be better balanced to overpay 10k and not 15k.
assert_eq!(overpaid_fees, 15_000);
// Now, test that if there are 2 paths, a "cheaper" by fee path wouldn't be prioritized
// while taking even more fee to match htlc_minimum_msat.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 4,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 65_000,
htlc_maximum_msat: OptionalField::Present(80_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 3,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 4,
timestamp: 4,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 100_000,
excess_data: Vec::new()
});
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 60_000, 42, Arc::clone(&logger)).unwrap();
// Fine to overpay for htlc_minimum_msat if it allows us to save fee.
assert_eq!(route.paths.len(), 1);
assert_eq!(route.paths[0][0].short_channel_id, 12);
let fees = route.paths[0][0].fee_msat;
assert_eq!(fees, 5_000);
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 50_000, 42, Arc::clone(&logger)).unwrap();
// Not fine to overpay for htlc_minimum_msat if it requires paying more than fee on
// the other channel.
assert_eq!(route.paths.len(), 1);
assert_eq!(route.paths[0][0].short_channel_id, 2);
let fees = route.paths[0][0].fee_msat;
assert_eq!(fees, 5_000);
}
2020-08-10 13:50:29 +03:00
#[test]
fn disable_channels_test() {
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
// // Disable channels 4 and 12 by flags=2
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 4,
timestamp: 2,
flags: 2, // to disable
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 2,
flags: 2, // to disable
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// If all the channels require some features we don't understand, route should fail
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 100, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "Failed to find a path to the given destination");
} else { panic!(); }
// If we specify a channel to node7, that overrides our local channel view and that gets used
let our_chans = vec![channelmanager::ChannelDetails {
channel_id: [0; 32],
funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }),
2020-08-10 13:50:29 +03:00
short_channel_id: Some(42),
remote_network_id: nodes[7].clone(),
counterparty_features: InitFeatures::from_le_bytes(vec![0b11]),
channel_value_satoshis: 0,
user_id: 0,
outbound_capacity_msat: 250_000_000,
2020-08-10 13:50:29 +03:00
inbound_capacity_msat: 0,
is_live: true, is_public: true,
counterparty_forwarding_info: None,
2020-08-10 13:50:29 +03:00
}];
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, Some(&our_chans.iter().collect::<Vec<_>>()), &Vec::new(), 100, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths[0].len(), 2);
assert_eq!(route.paths[0][0].pubkey, nodes[7]);
assert_eq!(route.paths[0][0].short_channel_id, 42);
assert_eq!(route.paths[0][0].fee_msat, 200);
assert_eq!(route.paths[0][0].cltv_expiry_delta, (13 << 8) | 1);
assert_eq!(route.paths[0][0].node_features.le_flags(), &vec![0b11]); // it should also override our view of their features
assert_eq!(route.paths[0][0].channel_features.le_flags(), &Vec::<u8>::new()); // No feature flags will meet the relevant-to-channel conversion
assert_eq!(route.paths[0][1].pubkey, nodes[2]);
assert_eq!(route.paths[0][1].short_channel_id, 13);
assert_eq!(route.paths[0][1].fee_msat, 100);
assert_eq!(route.paths[0][1].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3));
assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(13));
}
#[test]
fn disable_node_test() {
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (_, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
// Disable nodes 1, 2, and 8 by requiring unknown feature bits
let mut unknown_features = NodeFeatures::known();
unknown_features.set_required_unknown_bits();
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[0], unknown_features.clone(), 1);
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[1], unknown_features.clone(), 1);
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[7], unknown_features.clone(), 1);
// If all nodes require some features we don't understand, route should fail
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 100, 42, Arc::clone(&logger)) {
assert_eq!(err, "Failed to find a path to the given destination");
} else { panic!(); }
// If we specify a channel to node7, that overrides our local channel view and that gets used
let our_chans = vec![channelmanager::ChannelDetails {
channel_id: [0; 32],
funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }),
short_channel_id: Some(42),
remote_network_id: nodes[7].clone(),
counterparty_features: InitFeatures::from_le_bytes(vec![0b11]),
channel_value_satoshis: 0,
user_id: 0,
outbound_capacity_msat: 250_000_000,
inbound_capacity_msat: 0,
is_live: true, is_public: true,
counterparty_forwarding_info: None,
}];
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, Some(&our_chans.iter().collect::<Vec<_>>()), &Vec::new(), 100, 42, Arc::clone(&logger)).unwrap();
assert_eq!(route.paths[0].len(), 2);
assert_eq!(route.paths[0][0].pubkey, nodes[7]);
assert_eq!(route.paths[0][0].short_channel_id, 42);
assert_eq!(route.paths[0][0].fee_msat, 200);
assert_eq!(route.paths[0][0].cltv_expiry_delta, (13 << 8) | 1);
assert_eq!(route.paths[0][0].node_features.le_flags(), &vec![0b11]); // it should also override our view of their features
assert_eq!(route.paths[0][0].channel_features.le_flags(), &Vec::<u8>::new()); // No feature flags will meet the relevant-to-channel conversion
assert_eq!(route.paths[0][1].pubkey, nodes[2]);
assert_eq!(route.paths[0][1].short_channel_id, 13);
assert_eq!(route.paths[0][1].fee_msat, 100);
assert_eq!(route.paths[0][1].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3));
assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(13));
// Note that we don't test disabling node 3 and failing to route to it, as we (somewhat
// naively) assume that the user checked the feature bits on the invoice, which override
// the node_announcement.
}
#[test]
fn our_chans_test() {
2020-08-10 13:50:29 +03:00
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (_, our_id, _, nodes) = get_nodes(&secp_ctx);
// Route to 1 via 2 and 3 because our channel to 1 is disabled
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[0], None, None, &Vec::new(), 100, 42, Arc::clone(&logger)).unwrap();
assert_eq!(route.paths[0].len(), 3);
assert_eq!(route.paths[0][0].pubkey, nodes[1]);
assert_eq!(route.paths[0][0].short_channel_id, 2);
assert_eq!(route.paths[0][0].fee_msat, 200);
assert_eq!(route.paths[0][0].cltv_expiry_delta, (4 << 8) | 1);
assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(2));
assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(2));
assert_eq!(route.paths[0][1].pubkey, nodes[2]);
assert_eq!(route.paths[0][1].short_channel_id, 4);
assert_eq!(route.paths[0][1].fee_msat, 100);
assert_eq!(route.paths[0][1].cltv_expiry_delta, (3 << 8) | 2);
assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3));
assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(4));
assert_eq!(route.paths[0][2].pubkey, nodes[0]);
assert_eq!(route.paths[0][2].short_channel_id, 3);
assert_eq!(route.paths[0][2].fee_msat, 100);
assert_eq!(route.paths[0][2].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][2].node_features.le_flags(), &id_to_feature_flags(1));
assert_eq!(route.paths[0][2].channel_features.le_flags(), &id_to_feature_flags(3));
// If we specify a channel to node7, that overrides our local channel view and that gets used
let our_chans = vec![channelmanager::ChannelDetails {
channel_id: [0; 32],
funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }),
short_channel_id: Some(42),
remote_network_id: nodes[7].clone(),
counterparty_features: InitFeatures::from_le_bytes(vec![0b11]),
channel_value_satoshis: 0,
user_id: 0,
outbound_capacity_msat: 250_000_000,
inbound_capacity_msat: 0,
is_live: true, is_public: true,
counterparty_forwarding_info: None,
}];
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, Some(&our_chans.iter().collect::<Vec<_>>()), &Vec::new(), 100, 42, Arc::clone(&logger)).unwrap();
assert_eq!(route.paths[0].len(), 2);
assert_eq!(route.paths[0][0].pubkey, nodes[7]);
assert_eq!(route.paths[0][0].short_channel_id, 42);
assert_eq!(route.paths[0][0].fee_msat, 200);
assert_eq!(route.paths[0][0].cltv_expiry_delta, (13 << 8) | 1);
assert_eq!(route.paths[0][0].node_features.le_flags(), &vec![0b11]);
assert_eq!(route.paths[0][0].channel_features.le_flags(), &Vec::<u8>::new()); // No feature flags will meet the relevant-to-channel conversion
assert_eq!(route.paths[0][1].pubkey, nodes[2]);
assert_eq!(route.paths[0][1].short_channel_id, 13);
assert_eq!(route.paths[0][1].fee_msat, 100);
assert_eq!(route.paths[0][1].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3));
assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(13));
}
fn last_hops(nodes: &Vec<PublicKey>) -> Vec<RouteHintHop> {
let zero_fees = RoutingFees {
base_msat: 0,
proportional_millionths: 0,
};
vec!(RouteHintHop {
src_node_id: nodes[3].clone(),
short_channel_id: 8,
fees: zero_fees,
cltv_expiry_delta: (8 << 8) | 1,
htlc_minimum_msat: None,
htlc_maximum_msat: None,
}, RouteHintHop {
src_node_id: nodes[4].clone(),
short_channel_id: 9,
fees: RoutingFees {
base_msat: 1001,
proportional_millionths: 0,
},
cltv_expiry_delta: (9 << 8) | 1,
htlc_minimum_msat: None,
htlc_maximum_msat: None,
}, RouteHintHop {
src_node_id: nodes[5].clone(),
short_channel_id: 10,
fees: zero_fees,
cltv_expiry_delta: (10 << 8) | 1,
htlc_minimum_msat: None,
htlc_maximum_msat: None,
})
}
#[test]
fn last_hops_test() {
2020-08-10 13:50:29 +03:00
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (_, our_id, _, nodes) = get_nodes(&secp_ctx);
2017-12-25 01:05:27 -05:00
// Simple test across 2, 3, 5, and 4 via a last_hop channel
2020-08-10 13:50:29 +03:00
// First check that lst hop can't have its source as the payee.
let invalid_last_hop = RouteHintHop {
2020-08-10 13:50:29 +03:00
src_node_id: nodes[6],
short_channel_id: 8,
fees: RoutingFees {
base_msat: 1000,
proportional_millionths: 0,
},
cltv_expiry_delta: (8 << 8) | 1,
htlc_minimum_msat: None,
htlc_maximum_msat: None,
};
let mut invalid_last_hops = last_hops(&nodes);
invalid_last_hops.push(invalid_last_hop);
{
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[6], None, None, &invalid_last_hops.iter().collect::<Vec<_>>(), 100, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "Last hop cannot have a payee as a source.");
} else { panic!(); }
}
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[6], None, None, &last_hops(&nodes).iter().collect::<Vec<_>>(), 100, 42, Arc::clone(&logger)).unwrap();
assert_eq!(route.paths[0].len(), 5);
assert_eq!(route.paths[0][0].pubkey, nodes[1]);
assert_eq!(route.paths[0][0].short_channel_id, 2);
assert_eq!(route.paths[0][0].fee_msat, 100);
assert_eq!(route.paths[0][0].cltv_expiry_delta, (4 << 8) | 1);
assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(2));
assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(2));
assert_eq!(route.paths[0][1].pubkey, nodes[2]);
assert_eq!(route.paths[0][1].short_channel_id, 4);
assert_eq!(route.paths[0][1].fee_msat, 0);
assert_eq!(route.paths[0][1].cltv_expiry_delta, (6 << 8) | 1);
assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3));
assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(4));
assert_eq!(route.paths[0][2].pubkey, nodes[4]);
assert_eq!(route.paths[0][2].short_channel_id, 6);
assert_eq!(route.paths[0][2].fee_msat, 0);
assert_eq!(route.paths[0][2].cltv_expiry_delta, (11 << 8) | 1);
assert_eq!(route.paths[0][2].node_features.le_flags(), &id_to_feature_flags(5));
assert_eq!(route.paths[0][2].channel_features.le_flags(), &id_to_feature_flags(6));
assert_eq!(route.paths[0][3].pubkey, nodes[3]);
assert_eq!(route.paths[0][3].short_channel_id, 11);
assert_eq!(route.paths[0][3].fee_msat, 0);
assert_eq!(route.paths[0][3].cltv_expiry_delta, (8 << 8) | 1);
// If we have a peer in the node map, we'll use their features here since we don't have
// a way of figuring out their features from the invoice:
assert_eq!(route.paths[0][3].node_features.le_flags(), &id_to_feature_flags(4));
assert_eq!(route.paths[0][3].channel_features.le_flags(), &id_to_feature_flags(11));
assert_eq!(route.paths[0][4].pubkey, nodes[6]);
assert_eq!(route.paths[0][4].short_channel_id, 8);
assert_eq!(route.paths[0][4].fee_msat, 100);
assert_eq!(route.paths[0][4].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][4].node_features.le_flags(), &Vec::<u8>::new()); // We dont pass flags in from invoices yet
assert_eq!(route.paths[0][4].channel_features.le_flags(), &Vec::<u8>::new()); // We can't learn any flags from invoices, sadly
}
#[test]
fn our_chans_last_hop_connect_test() {
2020-08-10 13:50:29 +03:00
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (_, our_id, _, nodes) = get_nodes(&secp_ctx);
// Simple test with outbound channel to 4 to test that last_hops and first_hops connect
let our_chans = vec![channelmanager::ChannelDetails {
channel_id: [0; 32],
funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }),
short_channel_id: Some(42),
remote_network_id: nodes[3].clone(),
counterparty_features: InitFeatures::from_le_bytes(vec![0b11]),
channel_value_satoshis: 0,
user_id: 0,
outbound_capacity_msat: 250_000_000,
inbound_capacity_msat: 0,
is_live: true, is_public: true,
counterparty_forwarding_info: None,
}];
let mut last_hops = last_hops(&nodes);
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[6], None, Some(&our_chans.iter().collect::<Vec<_>>()), &last_hops.iter().collect::<Vec<_>>(), 100, 42, Arc::clone(&logger)).unwrap();
assert_eq!(route.paths[0].len(), 2);
assert_eq!(route.paths[0][0].pubkey, nodes[3]);
assert_eq!(route.paths[0][0].short_channel_id, 42);
assert_eq!(route.paths[0][0].fee_msat, 0);
assert_eq!(route.paths[0][0].cltv_expiry_delta, (8 << 8) | 1);
assert_eq!(route.paths[0][0].node_features.le_flags(), &vec![0b11]);
assert_eq!(route.paths[0][0].channel_features.le_flags(), &Vec::<u8>::new()); // No feature flags will meet the relevant-to-channel conversion
assert_eq!(route.paths[0][1].pubkey, nodes[6]);
assert_eq!(route.paths[0][1].short_channel_id, 8);
assert_eq!(route.paths[0][1].fee_msat, 100);
assert_eq!(route.paths[0][1].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][1].node_features.le_flags(), &Vec::<u8>::new()); // We dont pass flags in from invoices yet
assert_eq!(route.paths[0][1].channel_features.le_flags(), &Vec::<u8>::new()); // We can't learn any flags from invoices, sadly
last_hops[0].fees.base_msat = 1000;
// Revert to via 6 as the fee on 8 goes up
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[6], None, None, &last_hops.iter().collect::<Vec<_>>(), 100, 42, Arc::clone(&logger)).unwrap();
assert_eq!(route.paths[0].len(), 4);
assert_eq!(route.paths[0][0].pubkey, nodes[1]);
assert_eq!(route.paths[0][0].short_channel_id, 2);
assert_eq!(route.paths[0][0].fee_msat, 200); // fee increased as its % of value transferred across node
assert_eq!(route.paths[0][0].cltv_expiry_delta, (4 << 8) | 1);
assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(2));
assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(2));
assert_eq!(route.paths[0][1].pubkey, nodes[2]);
assert_eq!(route.paths[0][1].short_channel_id, 4);
assert_eq!(route.paths[0][1].fee_msat, 100);
assert_eq!(route.paths[0][1].cltv_expiry_delta, (7 << 8) | 1);
assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3));
assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(4));
assert_eq!(route.paths[0][2].pubkey, nodes[5]);
assert_eq!(route.paths[0][2].short_channel_id, 7);
assert_eq!(route.paths[0][2].fee_msat, 0);
assert_eq!(route.paths[0][2].cltv_expiry_delta, (10 << 8) | 1);
// If we have a peer in the node map, we'll use their features here since we don't have
// a way of figuring out their features from the invoice:
assert_eq!(route.paths[0][2].node_features.le_flags(), &id_to_feature_flags(6));
assert_eq!(route.paths[0][2].channel_features.le_flags(), &id_to_feature_flags(7));
assert_eq!(route.paths[0][3].pubkey, nodes[6]);
assert_eq!(route.paths[0][3].short_channel_id, 10);
assert_eq!(route.paths[0][3].fee_msat, 100);
assert_eq!(route.paths[0][3].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][3].node_features.le_flags(), &Vec::<u8>::new()); // We dont pass flags in from invoices yet
assert_eq!(route.paths[0][3].channel_features.le_flags(), &Vec::<u8>::new()); // We can't learn any flags from invoices, sadly
// ...but still use 8 for larger payments as 6 has a variable feerate
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[6], None, None, &last_hops.iter().collect::<Vec<_>>(), 2000, 42, Arc::clone(&logger)).unwrap();
assert_eq!(route.paths[0].len(), 5);
assert_eq!(route.paths[0][0].pubkey, nodes[1]);
assert_eq!(route.paths[0][0].short_channel_id, 2);
assert_eq!(route.paths[0][0].fee_msat, 3000);
assert_eq!(route.paths[0][0].cltv_expiry_delta, (4 << 8) | 1);
assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(2));
assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(2));
assert_eq!(route.paths[0][1].pubkey, nodes[2]);
assert_eq!(route.paths[0][1].short_channel_id, 4);
assert_eq!(route.paths[0][1].fee_msat, 0);
assert_eq!(route.paths[0][1].cltv_expiry_delta, (6 << 8) | 1);
assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3));
assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(4));
assert_eq!(route.paths[0][2].pubkey, nodes[4]);
assert_eq!(route.paths[0][2].short_channel_id, 6);
assert_eq!(route.paths[0][2].fee_msat, 0);
assert_eq!(route.paths[0][2].cltv_expiry_delta, (11 << 8) | 1);
assert_eq!(route.paths[0][2].node_features.le_flags(), &id_to_feature_flags(5));
assert_eq!(route.paths[0][2].channel_features.le_flags(), &id_to_feature_flags(6));
assert_eq!(route.paths[0][3].pubkey, nodes[3]);
assert_eq!(route.paths[0][3].short_channel_id, 11);
assert_eq!(route.paths[0][3].fee_msat, 1000);
assert_eq!(route.paths[0][3].cltv_expiry_delta, (8 << 8) | 1);
// If we have a peer in the node map, we'll use their features here since we don't have
// a way of figuring out their features from the invoice:
assert_eq!(route.paths[0][3].node_features.le_flags(), &id_to_feature_flags(4));
assert_eq!(route.paths[0][3].channel_features.le_flags(), &id_to_feature_flags(11));
assert_eq!(route.paths[0][4].pubkey, nodes[6]);
assert_eq!(route.paths[0][4].short_channel_id, 8);
assert_eq!(route.paths[0][4].fee_msat, 2000);
assert_eq!(route.paths[0][4].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][4].node_features.le_flags(), &Vec::<u8>::new()); // We dont pass flags in from invoices yet
assert_eq!(route.paths[0][4].channel_features.le_flags(), &Vec::<u8>::new()); // We can't learn any flags from invoices, sadly
}
#[test]
fn unannounced_path_test() {
// We should be able to send a payment to a destination without any help of a routing graph
// if we have a channel with a common counterparty that appears in the first and last hop
// hints.
let source_node_id = PublicKey::from_secret_key(&Secp256k1::new(), &SecretKey::from_slice(&hex::decode(format!("{:02}", 41).repeat(32)).unwrap()[..]).unwrap());
let middle_node_id = PublicKey::from_secret_key(&Secp256k1::new(), &SecretKey::from_slice(&hex::decode(format!("{:02}", 42).repeat(32)).unwrap()[..]).unwrap());
let target_node_id = PublicKey::from_secret_key(&Secp256k1::new(), &SecretKey::from_slice(&hex::decode(format!("{:02}", 43).repeat(32)).unwrap()[..]).unwrap());
// If we specify a channel to a middle hop, that overrides our local channel view and that gets used
let last_hops = vec![RouteHintHop {
src_node_id: middle_node_id,
short_channel_id: 8,
fees: RoutingFees {
base_msat: 1000,
proportional_millionths: 0,
},
cltv_expiry_delta: (8 << 8) | 1,
htlc_minimum_msat: None,
htlc_maximum_msat: None,
}];
let our_chans = vec![channelmanager::ChannelDetails {
channel_id: [0; 32],
funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }),
short_channel_id: Some(42),
remote_network_id: middle_node_id,
counterparty_features: InitFeatures::from_le_bytes(vec![0b11]),
channel_value_satoshis: 100000,
user_id: 0,
outbound_capacity_msat: 100000,
inbound_capacity_msat: 100000,
is_live: true, is_public: true,
counterparty_forwarding_info: None,
}];
let route = get_route(&source_node_id, &NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash()), &target_node_id, None, Some(&our_chans.iter().collect::<Vec<_>>()), &last_hops.iter().collect::<Vec<_>>(), 100, 42, Arc::new(test_utils::TestLogger::new())).unwrap();
assert_eq!(route.paths[0].len(), 2);
assert_eq!(route.paths[0][0].pubkey, middle_node_id);
assert_eq!(route.paths[0][0].short_channel_id, 42);
assert_eq!(route.paths[0][0].fee_msat, 1000);
assert_eq!(route.paths[0][0].cltv_expiry_delta, (8 << 8) | 1);
assert_eq!(route.paths[0][0].node_features.le_flags(), &[0b11]);
assert_eq!(route.paths[0][0].channel_features.le_flags(), &[0; 0]); // We can't learn any flags from invoices, sadly
assert_eq!(route.paths[0][1].pubkey, target_node_id);
assert_eq!(route.paths[0][1].short_channel_id, 8);
assert_eq!(route.paths[0][1].fee_msat, 100);
assert_eq!(route.paths[0][1].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][1].node_features.le_flags(), &[0; 0]); // We dont pass flags in from invoices yet
assert_eq!(route.paths[0][1].channel_features.le_flags(), &[0; 0]); // We can't learn any flags from invoices, sadly
}
2020-08-10 13:50:29 +03:00
#[test]
fn available_amount_while_routing_test() {
// Tests whether we choose the correct available channel amount while routing.
let (secp_ctx, mut net_graph_msg_handler, chain_monitor, logger) = build_graph();
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
// We will use a simple single-path route from
// our node to node2 via node0: channels {1, 3}.
// First disable all other paths.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 2,
flags: 2,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 2,
flags: 2,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Make the first channel (#1) very permissive,
// and we will be testing all limits on the second channel.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 1,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(1_000_000_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// First, let's see if routing works if we have absolutely no idea about the available amount.
// In this case, it should be set to 250_000 sats.
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 3,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
{
// Attempt to route more than available results in a failure.
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 250_000_001, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "Failed to find a sufficient route to the given destination");
} else { panic!(); }
}
{
// Now, attempt to route an exact amount we have should be fine.
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 250_000_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 1);
let path = route.paths.last().unwrap();
assert_eq!(path.len(), 2);
assert_eq!(path.last().unwrap().pubkey, nodes[2]);
assert_eq!(path.last().unwrap().fee_msat, 250_000_000);
}
// Check that setting outbound_capacity_msat in first_hops limits the channels.
// Disable channel #1 and use another first hop.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 1,
timestamp: 3,
flags: 2,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(1_000_000_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Now, limit the first_hop by the outbound_capacity_msat of 200_000 sats.
let our_chans = vec![channelmanager::ChannelDetails {
channel_id: [0; 32],
funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }),
short_channel_id: Some(42),
remote_network_id: nodes[0].clone(),
counterparty_features: InitFeatures::from_le_bytes(vec![0b11]),
channel_value_satoshis: 0,
user_id: 0,
outbound_capacity_msat: 200_000_000,
inbound_capacity_msat: 0,
is_live: true, is_public: true,
counterparty_forwarding_info: None,
}];
{
// Attempt to route more than available results in a failure.
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), Some(&our_chans.iter().collect::<Vec<_>>()), &Vec::new(), 200_000_001, 42, Arc::clone(&logger)) {
assert_eq!(err, "Failed to find a sufficient route to the given destination");
} else { panic!(); }
}
{
// Now, attempt to route an exact amount we have should be fine.
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), Some(&our_chans.iter().collect::<Vec<_>>()), &Vec::new(), 200_000_000, 42, Arc::clone(&logger)).unwrap();
assert_eq!(route.paths.len(), 1);
let path = route.paths.last().unwrap();
assert_eq!(path.len(), 2);
assert_eq!(path.last().unwrap().pubkey, nodes[2]);
assert_eq!(path.last().unwrap().fee_msat, 200_000_000);
}
// Enable channel #1 back.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 1,
timestamp: 4,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(1_000_000_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
2020-08-10 13:50:29 +03:00
// Now let's see if routing works if we know only htlc_maximum_msat.
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 3,
timestamp: 3,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(15_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
{
// Attempt to route more than available results in a failure.
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 15_001, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "Failed to find a sufficient route to the given destination");
} else { panic!(); }
}
{
// Now, attempt to route an exact amount we have should be fine.
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 15_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 1);
let path = route.paths.last().unwrap();
assert_eq!(path.len(), 2);
assert_eq!(path.last().unwrap().pubkey, nodes[2]);
assert_eq!(path.last().unwrap().fee_msat, 15_000);
}
// Now let's see if routing works if we know only capacity from the UTXO.
// We can't change UTXO capacity on the fly, so we'll disable
// the existing channel and add another one with the capacity we need.
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 3,
timestamp: 4,
flags: 2,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
let good_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
.push_slice(&PublicKey::from_secret_key(&secp_ctx, &privkeys[0]).serialize())
.push_slice(&PublicKey::from_secret_key(&secp_ctx, &privkeys[2]).serialize())
.push_opcode(opcodes::all::OP_PUSHNUM_2)
.push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
*chain_monitor.utxo_ret.lock().unwrap() = Ok(TxOut { value: 15, script_pubkey: good_script.clone() });
net_graph_msg_handler.add_chain_access(Some(chain_monitor));
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], &privkeys[2], ChannelFeatures::from_le_bytes(id_to_feature_flags(3)), 333);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 333,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (3 << 8) | 1,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 333,
timestamp: 1,
flags: 1,
cltv_expiry_delta: (3 << 8) | 2,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 100,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
{
// Attempt to route more than available results in a failure.
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 15_001, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "Failed to find a sufficient route to the given destination");
} else { panic!(); }
}
{
// Now, attempt to route an exact amount we have should be fine.
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 15_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 1);
let path = route.paths.last().unwrap();
assert_eq!(path.len(), 2);
assert_eq!(path.last().unwrap().pubkey, nodes[2]);
assert_eq!(path.last().unwrap().fee_msat, 15_000);
}
// Now let's see if routing chooses htlc_maximum_msat over UTXO capacity.
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 333,
timestamp: 6,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(10_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
{
// Attempt to route more than available results in a failure.
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 10_001, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "Failed to find a sufficient route to the given destination");
} else { panic!(); }
}
{
// Now, attempt to route an exact amount we have should be fine.
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 10_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 1);
let path = route.paths.last().unwrap();
assert_eq!(path.len(), 2);
assert_eq!(path.last().unwrap().pubkey, nodes[2]);
assert_eq!(path.last().unwrap().fee_msat, 10_000);
}
}
#[test]
fn available_liquidity_last_hop_test() {
// Check that available liquidity properly limits the path even when only
// one of the latter hops is limited.
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
// Path via {node7, node2, node4} is channels {12, 13, 6, 11}.
// {12, 13, 11} have the capacities of 100, {6} has a capacity of 50.
// Total capacity: 50 sats.
// Disable other potential paths.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 2,
flags: 2,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 7,
timestamp: 2,
flags: 2,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Limit capacities
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 13,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 6,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(50_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 11,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
{
// Attempt to route more than available results in a failure.
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3],
Some(InvoiceFeatures::known()), None, &Vec::new(), 60_000, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "Failed to find a sufficient route to the given destination");
} else { panic!(); }
}
{
// Now, attempt to route 49 sats (just a bit below the capacity).
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3],
Some(InvoiceFeatures::known()), None, &Vec::new(), 49_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 1);
let mut total_amount_paid_msat = 0;
for path in &route.paths {
assert_eq!(path.len(), 4);
assert_eq!(path.last().unwrap().pubkey, nodes[3]);
total_amount_paid_msat += path.last().unwrap().fee_msat;
}
assert_eq!(total_amount_paid_msat, 49_000);
}
{
// Attempt to route an exact amount is also fine
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3],
Some(InvoiceFeatures::known()), None, &Vec::new(), 50_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 1);
let mut total_amount_paid_msat = 0;
for path in &route.paths {
assert_eq!(path.len(), 4);
assert_eq!(path.last().unwrap().pubkey, nodes[3]);
total_amount_paid_msat += path.last().unwrap().fee_msat;
}
assert_eq!(total_amount_paid_msat, 50_000);
}
}
#[test]
fn ignore_fee_first_hop_test() {
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
// Path via node0 is channels {1, 3}. Limit them to 100 and 50 sats (total limit 50).
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 1,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 1_000_000,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 3,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(50_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
{
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 50_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 1);
let mut total_amount_paid_msat = 0;
for path in &route.paths {
assert_eq!(path.len(), 2);
assert_eq!(path.last().unwrap().pubkey, nodes[2]);
total_amount_paid_msat += path.last().unwrap().fee_msat;
}
assert_eq!(total_amount_paid_msat, 50_000);
}
}
#[test]
fn simple_mpp_route_test() {
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
// We need a route consisting of 3 paths:
// From our node to node2 via node0, node7, node1 (three paths one hop each).
// To achieve this, the amount being transferred should be around
// the total capacity of these 3 paths.
// First, we set limits on these (previously unlimited) channels.
// Their aggregate capacity will be 50 + 60 + 180 = 290 sats.
// Path via node0 is channels {1, 3}. Limit them to 100 and 50 sats (total limit 50).
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 1,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 3,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(50_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Path via node7 is channels {12, 13}. Limit them to 60 and 60 sats
// (total limit 60).
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(60_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 13,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(60_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Path via node1 is channels {2, 4}. Limit them to 200 and 180 sats
// (total capacity 180 sats).
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(200_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 4,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(180_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
{
// Attempt to route more than available results in a failure.
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(),
&nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 300_000, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "Failed to find a sufficient route to the given destination");
} else { panic!(); }
}
{
// Now, attempt to route 250 sats (just a bit below the capacity).
// Our algorithm should provide us with these 3 paths.
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 250_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 3);
let mut total_amount_paid_msat = 0;
for path in &route.paths {
assert_eq!(path.len(), 2);
assert_eq!(path.last().unwrap().pubkey, nodes[2]);
total_amount_paid_msat += path.last().unwrap().fee_msat;
}
assert_eq!(total_amount_paid_msat, 250_000);
}
{
// Attempt to route an exact amount is also fine
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 290_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 3);
let mut total_amount_paid_msat = 0;
for path in &route.paths {
assert_eq!(path.len(), 2);
assert_eq!(path.last().unwrap().pubkey, nodes[2]);
total_amount_paid_msat += path.last().unwrap().fee_msat;
}
assert_eq!(total_amount_paid_msat, 290_000);
}
}
#[test]
fn long_mpp_route_test() {
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
// We need a route consisting of 3 paths:
// From our node to node3 via {node0, node2}, {node7, node2, node4} and {node7, node2}.
// Note that these paths overlap (channels 5, 12, 13).
// We will route 300 sats.
// Each path will have 100 sats capacity, those channels which
// are used twice will have 200 sats capacity.
// Disable other potential paths.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 2,
flags: 2,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 7,
timestamp: 2,
flags: 2,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Path via {node0, node2} is channels {1, 3, 5}.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 1,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 3,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Capacity of 200 sats because this channel will be used by 3rd path as well.
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], &privkeys[3], ChannelFeatures::from_le_bytes(id_to_feature_flags(5)), 5);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 5,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(200_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Path via {node7, node2, node4} is channels {12, 13, 6, 11}.
// Add 100 sats to the capacities of {12, 13}, because these channels
// are also used for 3rd path. 100 sats for the rest. Total capacity: 100 sats.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(200_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 13,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(200_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 6,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 11,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Path via {node7, node2} is channels {12, 13, 5}.
// We already limited them to 200 sats (they are used twice for 100 sats).
// Nothing to do here.
{
// Attempt to route more than available results in a failure.
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3],
Some(InvoiceFeatures::known()), None, &Vec::new(), 350_000, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "Failed to find a sufficient route to the given destination");
} else { panic!(); }
}
{
// Now, attempt to route 300 sats (exact amount we can route).
// Our algorithm should provide us with these 3 paths, 100 sats each.
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3],
Some(InvoiceFeatures::known()), None, &Vec::new(), 300_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 3);
let mut total_amount_paid_msat = 0;
for path in &route.paths {
assert_eq!(path.last().unwrap().pubkey, nodes[3]);
total_amount_paid_msat += path.last().unwrap().fee_msat;
}
assert_eq!(total_amount_paid_msat, 300_000);
}
}
#[test]
fn mpp_cheaper_route_test() {
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
// This test checks that if we have two cheaper paths and one more expensive path,
// so that liquidity-wise any 2 of 3 combination is sufficient,
// two cheaper paths will be taken.
// These paths have equal available liquidity.
// We need a combination of 3 paths:
// From our node to node3 via {node0, node2}, {node7, node2, node4} and {node7, node2}.
// Note that these paths overlap (channels 5, 12, 13).
// Each path will have 100 sats capacity, those channels which
// are used twice will have 200 sats capacity.
// Disable other potential paths.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 2,
flags: 2,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 7,
timestamp: 2,
flags: 2,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Path via {node0, node2} is channels {1, 3, 5}.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 1,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 3,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Capacity of 200 sats because this channel will be used by 3rd path as well.
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], &privkeys[3], ChannelFeatures::from_le_bytes(id_to_feature_flags(5)), 5);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 5,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(200_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Path via {node7, node2, node4} is channels {12, 13, 6, 11}.
// Add 100 sats to the capacities of {12, 13}, because these channels
// are also used for 3rd path. 100 sats for the rest. Total capacity: 100 sats.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(200_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 13,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(200_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 6,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 1_000,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 11,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Path via {node7, node2} is channels {12, 13, 5}.
// We already limited them to 200 sats (they are used twice for 100 sats).
// Nothing to do here.
{
// Now, attempt to route 180 sats.
// Our algorithm should provide us with these 2 paths.
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3],
Some(InvoiceFeatures::known()), None, &Vec::new(), 180_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 2);
let mut total_value_transferred_msat = 0;
let mut total_paid_msat = 0;
for path in &route.paths {
assert_eq!(path.last().unwrap().pubkey, nodes[3]);
total_value_transferred_msat += path.last().unwrap().fee_msat;
for hop in path {
total_paid_msat += hop.fee_msat;
}
}
// If we paid fee, this would be higher.
assert_eq!(total_value_transferred_msat, 180_000);
let total_fees_paid = total_paid_msat - total_value_transferred_msat;
assert_eq!(total_fees_paid, 0);
}
}
#[test]
fn fees_on_mpp_route_test() {
// This test makes sure that MPP algorithm properly takes into account
// fees charged on the channels, by making the fees impactful:
// if the fee is not properly accounted for, the behavior is different.
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
// We need a route consisting of 2 paths:
// From our node to node3 via {node0, node2} and {node7, node2, node4}.
// We will route 200 sats, Each path will have 100 sats capacity.
// This test is not particularly stable: e.g.,
// there's a way to route via {node0, node2, node4}.
// It works while pathfinding is deterministic, but can be broken otherwise.
// It's fine to ignore this concern for now.
// Disable other potential paths.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 2,
flags: 2,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 7,
timestamp: 2,
flags: 2,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Path via {node0, node2} is channels {1, 3, 5}.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 1,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 3,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], &privkeys[3], ChannelFeatures::from_le_bytes(id_to_feature_flags(5)), 5);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 5,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Path via {node7, node2, node4} is channels {12, 13, 6, 11}.
// All channels should be 100 sats capacity. But for the fee experiment,
// we'll add absolute fee of 150 sats paid for the use channel 6 (paid to node2 on channel 13).
// Since channel 12 allows to deliver only 250 sats to channel 13, channel 13 can transfer only
// 100 sats (and pay 150 sats in fees for the use of channel 6),
// so no matter how large are other channels,
// the whole path will be limited by 100 sats with just these 2 conditions:
// - channel 12 capacity is 250 sats
// - fee for channel 6 is 150 sats
// Let's test this by enforcing these 2 conditions and removing other limits.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(250_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 13,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 6,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 150_000,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 11,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
{
// Attempt to route more than available results in a failure.
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3],
Some(InvoiceFeatures::known()), None, &Vec::new(), 210_000, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "Failed to find a sufficient route to the given destination");
} else { panic!(); }
}
{
// Now, attempt to route 200 sats (exact amount we can route).
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3],
Some(InvoiceFeatures::known()), None, &Vec::new(), 200_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 2);
let mut total_amount_paid_msat = 0;
for path in &route.paths {
assert_eq!(path.last().unwrap().pubkey, nodes[3]);
total_amount_paid_msat += path.last().unwrap().fee_msat;
}
assert_eq!(total_amount_paid_msat, 200_000);
}
}
#[test]
fn drop_lowest_channel_mpp_route_test() {
// This test checks that low-capacity channel is dropped when after
// path finding we realize that we found more capacity than we need.
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
// We need a route consisting of 3 paths:
// From our node to node2 via node0, node7, node1 (three paths one hop each).
// The first and the second paths should be sufficient, but the third should be
// cheaper, so that we select it but drop later.
// First, we set limits on these (previously unlimited) channels.
// Their aggregate capacity will be 50 + 60 + 20 = 130 sats.
// Path via node0 is channels {1, 3}. Limit them to 100 and 50 sats (total limit 50);
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 1,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(100_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 3,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(50_000),
fee_base_msat: 100,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Path via node7 is channels {12, 13}. Limit them to 60 and 60 sats (total limit 60);
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(60_000),
fee_base_msat: 100,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 13,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(60_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
// Path via node1 is channels {2, 4}. Limit them to 20 and 20 sats (total capacity 20 sats).
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(20_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 4,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(20_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
{
// Attempt to route more than available results in a failure.
if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 150_000, 42, Arc::clone(&logger)) {
2020-08-10 13:50:29 +03:00
assert_eq!(err, "Failed to find a sufficient route to the given destination");
} else { panic!(); }
}
{
// Now, attempt to route 125 sats (just a bit below the capacity of 3 channels).
// Our algorithm should provide us with these 3 paths.
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 125_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 3);
let mut total_amount_paid_msat = 0;
for path in &route.paths {
assert_eq!(path.len(), 2);
assert_eq!(path.last().unwrap().pubkey, nodes[2]);
total_amount_paid_msat += path.last().unwrap().fee_msat;
}
assert_eq!(total_amount_paid_msat, 125_000);
}
{
// Attempt to route without the last small cheap channel
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2],
Some(InvoiceFeatures::known()), None, &Vec::new(), 90_000, 42, Arc::clone(&logger)).unwrap();
2020-08-10 13:50:29 +03:00
assert_eq!(route.paths.len(), 2);
let mut total_amount_paid_msat = 0;
for path in &route.paths {
assert_eq!(path.len(), 2);
assert_eq!(path.last().unwrap().pubkey, nodes[2]);
total_amount_paid_msat += path.last().unwrap().fee_msat;
}
assert_eq!(total_amount_paid_msat, 90_000);
}
}
#[test]
fn min_criteria_consistency() {
// Test that we don't use an inconsistent metric between updating and walking nodes during
// our Dijkstra's pass. In the initial version of MPP, the "best source" for a given node
// was updated with a different criterion from the heap sorting, resulting in loops in
// calculated paths. We test for that specific case here.
// We construct a network that looks like this:
//
// node2 -1(3)2- node3
// 2 2
// (2) (4)
// 1 1
// node1 -1(5)2- node4 -1(1)2- node6
// 2
// (6)
// 1
// our_node
//
// We create a loop on the side of our real path - our destination is node 6, with a
// previous hop of node 4. From 4, the cheapest previous path is channel 2 from node 2,
// followed by node 3 over channel 3. Thereafter, the cheapest next-hop is back to node 4
// (this time over channel 4). Channel 4 has 0 htlc_minimum_msat whereas channel 1 (the
// other channel with a previous-hop of node 4) has a high (but irrelevant to the overall
// payment) htlc_minimum_msat. In the original algorithm, this resulted in node4's
// "previous hop" being set to node 3, creating a loop in the path.
let secp_ctx = Secp256k1::new();
let logger = Arc::new(test_utils::TestLogger::new());
let net_graph_msg_handler = NetGraphMsgHandler::new(genesis_block(Network::Testnet).header.block_hash(), None, Arc::clone(&logger));
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
add_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, &privkeys[1], ChannelFeatures::from_le_bytes(id_to_feature_flags(6)), 6);
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 6,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (6 << 8) | 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[1], NodeFeatures::from_le_bytes(id_to_feature_flags(1)), 0);
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], &privkeys[4], ChannelFeatures::from_le_bytes(id_to_feature_flags(5)), 5);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 5,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (5 << 8) | 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 100,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[4], NodeFeatures::from_le_bytes(id_to_feature_flags(4)), 0);
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], &privkeys[3], ChannelFeatures::from_le_bytes(id_to_feature_flags(4)), 4);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 4,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (4 << 8) | 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[3], NodeFeatures::from_le_bytes(id_to_feature_flags(3)), 0);
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[3], &privkeys[2], ChannelFeatures::from_le_bytes(id_to_feature_flags(3)), 3);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[3], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 3,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (3 << 8) | 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[2], NodeFeatures::from_le_bytes(id_to_feature_flags(2)), 0);
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], &privkeys[4], ChannelFeatures::from_le_bytes(id_to_feature_flags(2)), 2);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (2 << 8) | 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], &privkeys[6], ChannelFeatures::from_le_bytes(id_to_feature_flags(1)), 1);
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 1,
timestamp: 1,
flags: 0,
cltv_expiry_delta: (1 << 8) | 0,
htlc_minimum_msat: 100,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[6], NodeFeatures::from_le_bytes(id_to_feature_flags(6)), 0);
{
// Now ensure the route flows simply over nodes 1 and 4 to 6.
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[6], None, None, &Vec::new(), 10_000, 42, Arc::clone(&logger)).unwrap();
assert_eq!(route.paths.len(), 1);
assert_eq!(route.paths[0].len(), 3);
assert_eq!(route.paths[0][0].pubkey, nodes[1]);
assert_eq!(route.paths[0][0].short_channel_id, 6);
assert_eq!(route.paths[0][0].fee_msat, 100);
assert_eq!(route.paths[0][0].cltv_expiry_delta, (5 << 8) | 0);
assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(1));
assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(6));
assert_eq!(route.paths[0][1].pubkey, nodes[4]);
assert_eq!(route.paths[0][1].short_channel_id, 5);
assert_eq!(route.paths[0][1].fee_msat, 0);
assert_eq!(route.paths[0][1].cltv_expiry_delta, (1 << 8) | 0);
assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(4));
assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(5));
assert_eq!(route.paths[0][2].pubkey, nodes[6]);
assert_eq!(route.paths[0][2].short_channel_id, 1);
assert_eq!(route.paths[0][2].fee_msat, 10_000);
assert_eq!(route.paths[0][2].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][2].node_features.le_flags(), &id_to_feature_flags(6));
assert_eq!(route.paths[0][2].channel_features.le_flags(), &id_to_feature_flags(1));
}
}
#[test]
fn exact_fee_liquidity_limit() {
// Test that if, while walking the graph, we find a hop that has exactly enough liquidity
// for us, including later hop fees, we take it. In the first version of our MPP algorithm
// we calculated fees on a higher value, resulting in us ignoring such paths.
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (our_privkey, our_id, _, nodes) = get_nodes(&secp_ctx);
// We modify the graph to set the htlc_maximum of channel 2 to below the value we wish to
// send.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(85_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 12,
timestamp: 2,
flags: 0,
cltv_expiry_delta: (4 << 8) | 1,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(270_000),
fee_base_msat: 0,
fee_proportional_millionths: 1000000,
excess_data: Vec::new()
});
{
// Now, attempt to route 90 sats, which is exactly 90 sats at the last hop, plus the
// 200% fee charged channel 13 in the 1-to-2 direction.
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 90_000, 42, Arc::clone(&logger)).unwrap();
assert_eq!(route.paths.len(), 1);
assert_eq!(route.paths[0].len(), 2);
assert_eq!(route.paths[0][0].pubkey, nodes[7]);
assert_eq!(route.paths[0][0].short_channel_id, 12);
assert_eq!(route.paths[0][0].fee_msat, 90_000*2);
assert_eq!(route.paths[0][0].cltv_expiry_delta, (13 << 8) | 1);
assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(8));
assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(12));
assert_eq!(route.paths[0][1].pubkey, nodes[2]);
assert_eq!(route.paths[0][1].short_channel_id, 13);
assert_eq!(route.paths[0][1].fee_msat, 90_000);
assert_eq!(route.paths[0][1].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3));
assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(13));
}
}
#[test]
fn htlc_max_reduction_below_min() {
// Test that if, while walking the graph, we reduce the value being sent to meet an
// htlc_maximum_msat, we don't end up undershooting a later htlc_minimum_msat. In the
// initial version of MPP we'd accept such routes but reject them while recalculating fees,
// resulting in us thinking there is no possible path, even if other paths exist.
let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph();
let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx);
// We modify the graph to set the htlc_minimum of channel 2 and 4 as needed - channel 2
// gets an htlc_maximum_msat of 80_000 and channel 4 an htlc_minimum_msat of 90_000. We
// then try to send 90_000.
update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 2,
timestamp: 2,
flags: 0,
cltv_expiry_delta: 0,
htlc_minimum_msat: 0,
htlc_maximum_msat: OptionalField::Present(80_000),
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate {
chain_hash: genesis_block(Network::Testnet).header.block_hash(),
short_channel_id: 4,
timestamp: 2,
flags: 0,
cltv_expiry_delta: (4 << 8) | 1,
htlc_minimum_msat: 90_000,
htlc_maximum_msat: OptionalField::Absent,
fee_base_msat: 0,
fee_proportional_millionths: 0,
excess_data: Vec::new()
});
{
// Now, attempt to route 90 sats, hitting the htlc_minimum on channel 4, but
// overshooting the htlc_maximum on channel 2. Thus, we should pick the (absurdly
// expensive) channels 12-13 path.
let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 90_000, 42, Arc::clone(&logger)).unwrap();
assert_eq!(route.paths.len(), 1);
assert_eq!(route.paths[0].len(), 2);
assert_eq!(route.paths[0][0].pubkey, nodes[7]);
assert_eq!(route.paths[0][0].short_channel_id, 12);
assert_eq!(route.paths[0][0].fee_msat, 90_000*2);
assert_eq!(route.paths[0][0].cltv_expiry_delta, (13 << 8) | 1);
assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(8));
assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(12));
assert_eq!(route.paths[0][1].pubkey, nodes[2]);
assert_eq!(route.paths[0][1].short_channel_id, 13);
assert_eq!(route.paths[0][1].fee_msat, 90_000);
assert_eq!(route.paths[0][1].cltv_expiry_delta, 42);
assert_eq!(route.paths[0][1].node_features.le_flags(), InvoiceFeatures::known().le_flags());
assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(13));
}
}
use std::fs::File;
use util::ser::Readable;
/// Tries to open a network graph file, or panics with a URL to fetch it.
pub(super) fn get_route_file() -> Result<std::fs::File, std::io::Error> {
let res = File::open("net_graph-2021-02-12.bin") // By default we're run in RL/lightning
.or_else(|_| File::open("lightning/net_graph-2021-02-12.bin")) // We may be run manually in RL/
.or_else(|_| { // Fall back to guessing based on the binary location
// path is likely something like .../rust-lightning/target/debug/deps/lightning-...
let mut path = std::env::current_exe().unwrap();
path.pop(); // lightning-...
path.pop(); // deps
path.pop(); // debug
path.pop(); // target
path.push("lightning");
path.push("net_graph-2021-02-12.bin");
eprintln!("{}", path.to_str().unwrap());
File::open(path)
});
#[cfg(require_route_graph_test)]
return Ok(res.expect("Didn't have route graph and was configured to require it"));
#[cfg(not(require_route_graph_test))]
return res;
}
pub(super) fn random_init_seed() -> u64 {
// Because the default HashMap in std pulls OS randomness, we can use it as a (bad) RNG.
use std::hash::{BuildHasher, Hasher};
let seed = std::collections::hash_map::RandomState::new().build_hasher().finish();
println!("Using seed of {}", seed);
seed
}
#[test]
fn generate_routes() {
let mut d = match get_route_file() {
Ok(f) => f,
Err(_) => {
eprintln!("Please fetch https://bitcoin.ninja/ldk-net_graph-879e309c128-2020-02-12.bin and place it at lightning/net_graph-2021-02-12.bin");
return;
},
};
let graph = NetworkGraph::read(&mut d).unwrap();
// First, get 100 (source, destination) pairs for which route-getting actually succeeds...
let mut seed = random_init_seed() as usize;
'load_endpoints: for _ in 0..10 {
loop {
seed = seed.overflowing_mul(0xdeadbeef).0;
let src = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap();
seed = seed.overflowing_mul(0xdeadbeef).0;
let dst = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap();
let amt = seed as u64 % 200_000_000;
if get_route(src, &graph, dst, None, None, &[], amt, 42, &test_utils::TestLogger::new()).is_ok() {
continue 'load_endpoints;
}
}
}
}
#[test]
fn generate_routes_mpp() {
let mut d = match get_route_file() {
Ok(f) => f,
Err(_) => {
eprintln!("Please fetch https://bitcoin.ninja/ldk-net_graph-879e309c128-2020-02-12.bin and place it at lightning/net_graph-2021-02-12.bin");
return;
},
};
let graph = NetworkGraph::read(&mut d).unwrap();
// First, get 100 (source, destination) pairs for which route-getting actually succeeds...
let mut seed = random_init_seed() as usize;
'load_endpoints: for _ in 0..10 {
loop {
seed = seed.overflowing_mul(0xdeadbeef).0;
let src = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap();
seed = seed.overflowing_mul(0xdeadbeef).0;
let dst = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap();
let amt = seed as u64 % 200_000_000;
if get_route(src, &graph, dst, Some(InvoiceFeatures::known()), None, &[], amt, 42, &test_utils::TestLogger::new()).is_ok() {
continue 'load_endpoints;
}
}
}
}
2017-12-25 01:05:27 -05:00
}
#[cfg(all(test, feature = "unstable"))]
mod benches {
use super::*;
use util::logger::{Logger, Record};
use test::Bencher;
struct DummyLogger {}
impl Logger for DummyLogger {
fn log(&self, _record: &Record) {}
}
#[bench]
fn generate_routes(bench: &mut Bencher) {
let mut d = tests::get_route_file()
.expect("Please fetch https://bitcoin.ninja/ldk-net_graph-879e309c128-2020-02-12.bin and place it at lightning/net_graph-2021-02-12.bin");
let graph = NetworkGraph::read(&mut d).unwrap();
// First, get 100 (source, destination) pairs for which route-getting actually succeeds...
let mut path_endpoints = Vec::new();
let mut seed: usize = 0xdeadbeef;
'load_endpoints: for _ in 0..100 {
loop {
seed *= 0xdeadbeef;
let src = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap();
seed *= 0xdeadbeef;
let dst = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap();
let amt = seed as u64 % 1_000_000;
if get_route(src, &graph, dst, None, None, &[], amt, 42, &DummyLogger{}).is_ok() {
path_endpoints.push((src, dst, amt));
continue 'load_endpoints;
}
}
}
// ...then benchmark finding paths between the nodes we learned.
let mut idx = 0;
bench.iter(|| {
let (src, dst, amt) = path_endpoints[idx % path_endpoints.len()];
assert!(get_route(src, &graph, dst, None, None, &[], amt, 42, &DummyLogger{}).is_ok());
idx += 1;
});
}
#[bench]
fn generate_mpp_routes(bench: &mut Bencher) {
let mut d = tests::get_route_file()
.expect("Please fetch https://bitcoin.ninja/ldk-net_graph-879e309c128-2020-02-12.bin and place it at lightning/net_graph-2021-02-12.bin");
let graph = NetworkGraph::read(&mut d).unwrap();
// First, get 100 (source, destination) pairs for which route-getting actually succeeds...
let mut path_endpoints = Vec::new();
let mut seed: usize = 0xdeadbeef;
'load_endpoints: for _ in 0..100 {
loop {
seed *= 0xdeadbeef;
let src = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap();
seed *= 0xdeadbeef;
let dst = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap();
let amt = seed as u64 % 1_000_000;
if get_route(src, &graph, dst, Some(InvoiceFeatures::known()), None, &[], amt, 42, &DummyLogger{}).is_ok() {
path_endpoints.push((src, dst, amt));
continue 'load_endpoints;
}
}
}
// ...then benchmark finding paths between the nodes we learned.
let mut idx = 0;
bench.iter(|| {
let (src, dst, amt) = path_endpoints[idx % path_endpoints.len()];
assert!(get_route(src, &graph, dst, Some(InvoiceFeatures::known()), None, &[], amt, 42, &DummyLogger{}).is_ok());
idx += 1;
});
}
}